Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Event Type
Collections
Journal articles
Magazine articles
Control of malodorous gases emission from wet-end white water with hydrogen peroxide, TAPPI Journal October 2021
ABSTRACT: White water is highly recycled in the papermaking process so that its quality is easily deteriorated, thus producing lots of malodorous gases that are extremely harmful to human health and the environment. In this paper, the effect of hydrogen peroxide (H2O2) on the control of malodorous gases released from white water was investigated. The results showed that the released amount of total volatile organic compounds (TVOC) decreased gradually with the increase of H2O2 dosage. Specifically, the TVOC emission reached the minimum as the H2O2 dosage was 1.5 mmol/L, and meanwhile, the hydrogen sulfide (H2S) and ammonia (NH3) were almost completely removed. It was also found that pH had little effect on the release of TVOC as H2O2 was added, but it evidently affect-ed the release of H2S and NH3. When the pH value of the white water was changed to 4.0 or 9.0, the emission of TVOC decreased slightly, while both H2S and NH3 were completely removed in both cases. The ferrous ions (Fe2+) and the copper ions (Cu2+) were found to promote the generation of hydroxyl radicals (HOœ) out of H2O2, enhancing its inhibition on the release of malodorous gases from white water. The Fe2+/H2O2 system and Cu2+/H2O2 system exhibited similar efficiency in inhibiting the TVOC releasing, whereas the Cu2+/H2O2 system showed better perfor-mance in removing H2S and NH3.
Journal articles
Magazine articles
The role of hornification in the deterioration mechanism of physical properties of unrefined eucalyptus fibers during paper recycling, TAPPI Journal February 2024
ABSTRACT: Physical properties of cellulosic paper deteriorate significantly during paper recycling, which hinders the sustainable development of the paper industry. This work investigates the property deterioration mechanism and the role of hornification in the recycling process of unrefined eucalyptus fibers. The results showed that during the recycling process, the hornification gradually deepened, the fiber width gradually decreased, and the physical properties of the paper also gradually decreased. After five cycles of reuse, the relative bonding area decreased by 17.6%, while the relative bonding force decreased by 1.8%. Further results indicated that the physical property deterioration of the paper was closely related to the decrease of fiber bonding area. The fiber bonding area decreased linearly with the reduction of re-swollen fiber width during paper recycling. Re-swollen fiber width was closely related to the hornification. Hornification mainly reduces the bonding area of unrefined eucalyptus fiber rather than the bonding force. The work elucidates the role of hornification in the recycling process of unrefined eucalyptus fibers and the deterioration mechanism of paper physical properties, which will be helpful to control the property deterioration of paper and achieve a longer life cycle.
Stickies - A Challenge for Process Technology, 1997 Pulping Conference Proceedings
Stickies - A Challenge for Process Technology, 1997 Pulping Conference Proceedings
Understanding and Dealing with the 'Summer Effect', 1999 Pulping Conference Proceedings
Understanding and Dealing with the 'Summer Effect', 1999 Pulping Conference Proceedings
The Fate of Silver from Recycled Printed Electronic Circuits, 2008 Engineering, Pulping and Environmental Conference
The Fate of Silver from Recycled Printed Electronic Circuits, 2008 Engineering, Pulping and Environmental Conference
Journal articles
Magazine articles
Non-process elements in the recovery cycle of six Finnish kraft pulp mills, TAPPI Journal March 2023
ABSTRACT: In this work, the aim was to study the distribution and accumulation of the non-process elements (NPEs) in the recovery cycle of Finnish pulp mills and look at whether the geographical location (North vs. South) correlates with the current Finnish NPE levels. In addition, a comparison to older similar Finnish measurements was made with an attempt to analyze the reasons behind differences in the most typical non-process elements, aluminum (Al), silicon (Si), calcium (Ca), phosphorus (P), magnesium (Mg), manganese (Mn), chlorine (Cl), and potassium (K), taking into account the main elements in the white liquor, sodium (Na) and sulfur (S). The extensive laboratory results gained in this study are from seven sampling points at six pulp mills and present analytical data of metal concentrations. The data obtained presents an update to previous NPE studies. The levels found did not statistically differ between North and South Finland. The NPE levels, apart from phosphorus, found in Finnish pulp mills today have not changed considerably compared to the levels in earlier investigations in the 1990s. In the newest data, the phosphorus concentration was consistently higher in the as fired black liquor, electrostatic precipitator (ESP) ash, lime mud, and green liquor than in the previous results. In addition, the levels of Al, Si, Ca, P, and Mg in recovery boiler ESP ash were consistently higher compared to the older results. As the mills start to close their systems more, a stronger accumulation of NPEs can be expected, increasing the likelihood of more operational problems in the process. Further understanding of where the NPEs accumulate and how they can be most effectively removed will be valuable knowledge in the future.
Mechanism and Kinetics Studies of Oxidative Ammonolysis of Technical Lignins, 2000 Pulping / Process & Product Quality Conference Proceedings
Mechanism and Kinetics Studies of Oxidative Ammonolysis of Technical Lignins, 2000 Pulping / Process & Product Quality Conference Proceedings
Fresh Water Usage Reduction Through Concentration of Pulp Mill Effluent Using Gas Hydrate, 1997 Pulping Conference Proceedings
Fresh Water Usage Reduction Through Concentration of Pulp Mill Effluent Using Gas Hydrate, 1997 Pulping Conference Proceedings
New Clathrate Hydrates for Second Generation Freeze Concentration Applicaiton in Paper Industry, 1997 Papermakers Conference Proceedings
New Clathrate Hydrates for Second Generation Freeze Concentration Applicaiton in Paper Industry, 1997 Papermakers Conference Proceedings