Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 181–190 of 883 results (Duration : 0.011 seconds)
Journal articles
Magazine articles
Open Access
Repulping of wet strength paper towel with potassium monopersulfate, TAPPI Journal September 2020

ABSTRACT: Potassium monopersulfate (KMPS) was used in repulping of polyamide-epichlorohydrin (PAE)-containing paper towel. The effectiveness of the repulping aid was compared with that of sodium hypochlorite. Addition of a 2.4% KMPS repulping aid achieved complete repulping of the paper towel, resulting in 88% screen yield and about 5% rejects. To reach a similar pulping result, two times the oxidative equivalent amount of sodium hypochlorite had to be used. Compared to the pulp fibers obtained from sodium hypochlorite repulping, those obtained from KMPS repulping had higher physical strength, longer fiber length, and lower fines content. This study demonstrated that KMPS was superior to sodium hypochlorite in repulping of PAE-containing paper towel in terms of effectiveness and pulp quality.

Journal articles
Magazine articles
Open Access
Flow rheology of light foams generated from aqueous solutions of polyvinyl alcohol, TAPPI Journal January 2023

ABSTRACT: Recent studies have shown that foam-assisted application of additives into a wet web has advantages over the conventional way of adding the chemicals into the pulp suspension before forming, e.g., increased mechanical retention as well as high dosage giving increased wet strength without impairing the sheet uniformity. To engineer processes utilizing this new technology, the complex flow behavior of applied foams must be quantified. At the minimum, the foam viscosity and the slip velocity at the solid surfaces need to be known to build practical models that can be used in analyzing and upscaling unit processes of the foam-assisted application.In this study, the rheological behavior was quantified for foams having polyvinyl alcohol (PVOH), a widely used strength additive chemical, as the surfactant. The foam density was varied between 100 g/L and 300 g/L, and the concentration of the PVOH solution was varied between 0.5% and 6.0% (w/w). The foams were generated with a commercial foam generator, and the rheological properties of the foams were measured by using a horizontal pipe bank. At the outlet from the generator, the volumetric flow rate, the absolute pressure, and the bubble size distribution of the foam were measured. In the measurement pipe section, the viscous pressure gradient and the slip velocity were measured, after which the foam was discharged to ambient air pressure. The viscosity and the dynamic surface tension of the PVOH solutions were quantified with commercial laboratory devices. In the viscosity analysis, the apparent shear rate was calculated from the volumetric flow rate, and the resulting apparent viscosity was translated to real material viscosity data by applying the Weissenberg-Rabinowitsch correction. The results indicated that PVOH foams can be described with high accuracy as shear-thinning power-law fluids where the detailed behavior depends on the foam density and the PVOH concentration. Slip flow, as usual, increased with increasing wall shear stress, but it was also dependent on the PVOH concentration, the air content, and the bubble size. For both the foam viscosity and the slip flow, a correlation was found that described the quantitative behavior of all the studied foams with good accuracy.

Journal articles
Magazine articles
Open Access
Editorial: The state of cellulosic nanotechnology: June conference captures current and emerging trends, TAPPI Journal July 2023

ABSTRACT: From June 12-16, 253 participants from 18 countries gathered in Vancouver, BC, Canada, for TAPPI’s 2023 International Conference on Nanotechnology for Renewable Materials. Representatives from academia, industry, and federal research institutes could choose from among 140 technical presentations on production, characterization, applications, and functionalization of renewable nanomaterials.

Journal articles
Magazine articles
Open Access
Value creation by converting pulp mill flue gas streams to green fuels, TAPPI Journal March 2023

ABSTRACT: Climate change mitigation induces strong growth in renewable electricity production, partly driven by shifts in environmental policies and regulation. Intermittent renewable electricity requires supporting systems in the form of sustainable hydrocarbon chemicals such as transportation fuels. Bulk chemical production fits well into a pulp mill environment, given their large volumes, stable operation, and ample supply of biomass-based carbon feed-stock in the form of flue gases. Until now, the utilization of the flue gases from conventional operation of a pulp mill has received little attention. Harnessing these flue gases into usable products could offer additional value to mill operators, while also diversifying their product portfolio. However, electricity-based fuels and products require extra energy in the conversion step and may not be commercially competitive with current fossil products under the current regulation. There might also be uncertainties about future commodity prices. Thus, the objective of this study is to estimate the economic competitiveness and the added value of selected side products that could be produced alongside conventional pulp and paper products. A typical modern pulp mill is modeled in different product configurations and operational environments, which allows testing of various development paths. This illustrates how the overall energy and mass balance of a pulp mill would react to changes in different final products and other parameters. The focus of the study is in synthetic methanol, which is produced from flue gases and excess resources from the mill, with minimal interference to the pulping process. The results aid in assessing the necessity and magnitude of a premium payment for subsidizing green alter-natives to replace current fossil fuels and chemicals. Additionally, the results function as an indicator of the development state of the pulp and paper industry in the turmoil of climate change regulation. The results indicate that power-to-X systems offer one more viable pathway alternative for broadening the product portfolio of the pulp and paper sector, as well as opening new flexibility measures and services to grid stabilization. Market conditions were found to have a significant impact on the perceived profitability.

Journal articles
Magazine articles
Open Access
Research on flame-retardant paper prepared by the method of in-pulp addition of ammonium polyphosphate, TAPPI Journal May 2023

ABSTRACT: At present, the production of flame-retardant paper usually uses the impregnation method of phosphorus-nitrogen flame retardants in paper. There are few reports on the application of an in-pulp addition method. In this paper, the solubility of ammonium polyphosphate (APP) and its effect on flame-retardant paper were investigated for use in an in-pulp addition method. It was found that APP particles were square, with an average particle size of 21.88 µm. The particle size decreased significantly after immersion in water at 25°C for 24 h. Furthermore, most of the APPs were dissolved after immersion in water at 90°C for 0.5 h, and the residuals agglomerated and their shape turned into an amorphous form. The APP possessed strong electronegativity and could partially ionize in water. The solubility of APP was 0.18 g/100 mL water at 25°C and increased quickly when the temperature was higher than 30°C. Therefore, APP should be added to the pulp at temperatures below 30°C. The tensile strength of the paper initially increased with the addition of APP, and it reached the maximum value when the APP content was 10% and then gradually decreased. The limiting oxygen index (LOI) value of the paper was 28.7% when the added amount of APP was 30% and cationic polyacrylamide (CPAM) was 0.08%, reaching the flame-retardant level.

Journal articles
Magazine articles
Open Access
Utilization of Areca leaf residues for sustainable production of greyboard, TAPPI Journal May 2024

ABSTRACT: This study primarily focused on the production of greyboard using waste materials from small scale industries, and specifically using Areca leaf waste fibers as a sustainable and environmentally friendly resource. Areca leaf waste fibers were employed as the primary raw material for greyboard manufacturing. The resulting greyboard exhibited commendable properties, including a tear index of 7.53 mN·m2/g, tensile index of 18.34·N·m/g (i.e., breaking length of 1870 m), burst factor of 9.24 (gf/cm2)/(g/m2) and stiffness factor of 33.1. This greyboard was created through a series of steps, including hydrothermal treatment of the material at 155°C and mechanical pulping refinement. The produced greyboard met the specifications outlined in the Indian Standard 2617 (1967) for greyboard. The key objective of this work was to leverage agricultural waste resources to develop a chemical-free greyboard, resulting in reduced waste disposal in open fields and a decrease in chemical usage within the greyboard manufacturing industry. Various characterization techniques, including field emission scanning electron microscopy (FE-SEM), attenuated total reflection•Fourier transform infrared (ATR-FTIR) analysis, and X-ray diffraction (XRD), were used to assess the fiber quality, including aspects such as functional groups, morphology, and crystallinity for the materials used in the manufacturing process.

Journal articles
Magazine articles
Open Access
Editorial: Concentrated content: TAPPI Journal special issues create research visibility, TAPPI Journal September 2024

You may have noticed that TAPPI Journal often brings readers special focused issues from time to time. Over the years, these issues have covered a range of topics, including wet-end technology, recovery cycle, foam forming, coating, additives, biorefinery, nanotechnology, lignin, pulping, recycling, university research, and more.

Journal articles
Magazine articles
Open Access
Control of continuous digester kappa number using generalized model predictive control, TAPPI Journal September 2024

ABSTRACT: Kappa number variability at the digester impacts pulp yield, physical strength properties, and lignin content for downstream delignification processing. Regulation of the digester kappa number is therefore of great importance to the pulp and paper industry. In this work, an industrial application of model-based predictive control (MPC), based on generalized prediction control, was developed for kappa number feedback control and applied to a dual vessel continuous digester located in Western Canada. The problem was complicated by the need to apply heat at multiple locations in the cook. In this study, the problem was reduced from a multiple to a single input system by identifying three potential single variable permutations for temperature adjustment. In the end, a coordinated approach to the heaters was adopted. The process was perturbed and modeled as a simple first order plus dead time model and implemented in generalized predictive control (GPC). The GPC was then configured to be equivalent to Dahlin’s controller, which reduced tuning parameterization to a single closed loop time constant. The controller was then tuned based on robustness towards a worst-case dead time mismatch of 50%. The control held the mean value of the kappa number close to the setpoint, and a 40% reduction in the kappa number’s standard deviation was achieved. Different kappa number trials were run, and the average fiberline yield for each period was evaluated. Trial results suggested yield gains of 0.3%•0.5% were possible for each 1 kappa number target increase.

Journal articles
Magazine articles
Open Access
Study on the effect of aluminum diethyl phosphinate in synergy with ammonium polyphosphate on the flame retardancy of cellulose paper, TAPPI Journal April 2025

ABSTRACT: This paper involved the synergistic incorporation of ammonium polyphosphate (APP) and diethyl aluminum phosphinate (AlPi) as flame-retardant fillers for producing flame-retardant paper. The research revealed that APPs were square particles with a smooth surface, and their solubility was 0.29 g/100 mL at 20°C, which increased to 4.12 g/100 mL at 60°C. The surfaces of AlPis were rough and irregular. The solubility of AlPi was 0.023 g/100 mL at 20°C, and the solubility remained stable when the temperature increased. The addition of AlPi had a minor influence on the pulp beating degree. The tensile strength of kraft/APP/AlPi decreased with the increase of the AlPi addition. For a paper with 20 wt% APP and 0 wt% AlPi, the limiting oxygen index (LOI) value was 27.2%, and it burned completely at the eighth second during vertical combustion. When the AlPi additive content increased to 20 wt%, its LOI value increased to 32.2%, and the vertical combustion self-extinguished as soon as the flame was removed. Scanning electron microscopy (SEM) showed that the char residue of the kraft/APP/AlPi had a more complete fiber network structure than that of kraft/APP. The Raman spectroscopy indicated that the area ratio of the D (amorphous phase; disordered graphite vibration) band to the G (crystal phase; graphite carbon vibration) band (ID/ IG) ratio of kraft/APP/AlPi was lower than that of kraft/APP, meaning that the graphitization degree of the char residue of kraft/APP/AlPi was higher than that of kraft/APP, which indicated the kraft/APP/AlPi had better flame retardancy.

Journal articles
Magazine articles
Open Access
Editorial: A PaperCon preview of what’s coming in April, TAPPI Journal February 2020

Coming soon is PaperCon—TAPPI’s annual technical conference for paper and pack-aging industry professionals. Held this April 26-29 in Atlanta, GA, the conference features sessions on management, coating and graphic arts, process control, recycled paperboard, and a wide range of papermaking topics. Universities and research organizations from around the world are represented in the conference content, and below is a preliminary sampling of just a few of the many presentations that might interest TAPPI Journal readers.