Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Peracetate/singlet oxygen chemistry used in post-bleaching of kraft pulp as a practical oxidant for paper machines, TAPPI Journal May 2021
ABSTRACT: The use of a novel sodium peracetate/singlet oxygen chemistry for brightening bleached kraft pulp shows exciting potential for technical performance, supply logistics, safety, and cost reduction. Potential chemical carryover to the paper machine raises questions about whether peracetate will impact paper machine performance, such as metal corrosion, useful press felt life, and interference with existing biocide programs or paper machine chemistry. Sodium peracetate/singlet oxygen chemistry can be used in high-density storage chests for brightening/whitening and to increase color stability. Any oxidant used directly before the paper machine has the possibility of impacting paper machine operations. Traditional oxidants used in bleaching, such as chlorine dioxide and hydrogen peroxide, are known to cause corrosion on machinery metals and press felts. Hydrogen peroxide residuals can interfere with common biocide programs. Traditional oxidants used in biocide treatments themselves significantly degrade press felt life when the rule-of-thumb concentration thresholds are exceeded. Sodium peracetate is evaluated in this paper for its impact on nylon press felt fiber degradation, metal corrosion, and interference with typical biocide programs.Laboratory results indicate that sodium peracetate/singlet oxygen chemistry is less corrosive than chlorine, bromine, and hydrogen peroxide on press felt nylon fiber and can therefore be used at higher levels than those chemistries to increase brightness without increasing negative downstream impact. Sodium peracetate can also be used with current biocide programs without negative impacts such as consumptive degradation. Higher residuals of peracetate going to the paper machine may be useful as a biocide itself and can complement existing programs, allowing those programs to stay within their safe operating levels and thereby extend press felt useful life.
Journal articles
Magazine articles
Effects of tissue additives on copy paper forming and properties, TAPPI Journal February 2024
ABSTRACT: Laboratory tests were conducted in an effort to determine the effects on paper machine process attributes and the properties of paper made from recycled copy paper furnish upon the addition of chemical agents that are commonly used in the production of hygiene tissue products. Due to continuing growth in tissue and towel grades of paper, such agents are experiencing greater usage. Charge titration test results revealed that certain dry strength agents associated with tissue manufacturing have the potential to shift the balance of charge in papermaking furnish to less negative or even positive values. Creping adhesive was found to contribute to fine particle retention, especially when present at relatively high levels. Release aid and a polyacrylate dispersant had the opposite effect. Low addition levels of both a creping adhesive and a debonding agent surprisingly increased a wide range of strength attributes of paper handsheets in comparison to sheets prepared from unaltered recycled copy paper furnish. The debonding agent decreased paper strength at higher levels of addition. Such effects appear to depend not only on the expected effects of agents themselves, but also on how they affect the charge balance of the wet-end system.
Journal articles
Magazine articles
Modeling the dynamics of evaporator wash cycles, TAPPI Journal July 2024
ABSTRACT: Kraft pulping is a process that utilizes white liquor, composed of sodium sulfide (Na2S) and sodium hydroxide (NaOH), for wood delignification and pulp production. This process involves washing the dissolved organics and spent chemicals from the pulp, resulting in the generation of black liquor. Prior to its use as fuel in the recovery boiler, the black liquor is concentrated in multiple-effect evaporators. During the evaporation process, the inorganic salts present in the liquor become supersaturated and undergo crystallization. Fluctuations in sodium, carbonate, sulfate, and oxalate can give rise to severe sodium salt scaling events, which significantly impact the thermal efficiency of the evaporators, and ultimately, pulp production. Dynamic modeling provides insights into fluctuations in liquor chemistry in the evaporators. The primary objective of this study was to employ dynamic modeling to evaluate the effects of wash liquor recovery from evaporator wash cycles. The dynamics associated with wash cycles encompass variations in the concentrations of salts and solids in the recovered wash liquor, changes in the flow rate of wash liquor recovery, and fluctuations in liquor volume within the liquor tanks. The dynamic model was developed using Matlab Simulink and applied to the evaporation plant of a pulp mill in South America. By utilizing one month of mill process data, the model enabled the evaluation of fluctuations in liquor chemistry due to evaporator wash cycles. The developed model has demonstrated the potential to estimate the concentration of key ions responsible for scaling and to contribute to enhancements in evaporator washing strategies.
Journal articles
Magazine articles
Life cycle carbon analysis of packaging products containing nonwood residues: A case study on linerboard and corrugating medium, TAPPI Journal March 2024
ABSTRACT: Circularity is creating momentum toward utilizing waste feedstock in a myriad of applications. The paper industry is not an exception to this trend, and packaging products made from agricultural or agro-industrial residues are receiving more attention now than ever. Additionally, negative consumer perceptions of tree felling are accelerating the acceptance of these fibers. Nevertheless, adopting these residues raises the issue of whether they constitute a better alternative to fight climate change than wood. Answering this question is imperative to ensure that pledges to reduce carbon footprints across the industry are fulfilled. This paper aims to estimate the carbon footprint of corrugating medium and linerboard containing wheat straw and sugarcane bagasse pulp compared to analogous wood-based materials. The goal was also to understand how methodological decisions to allocate emissions to nonwood residues can affect the results. This study includes a life cycle carbon analysis spanning from cradle to grave, which comprises stages for residue production, pulping, paper-making, waste management, and corresponding transportation. For the proposed case study, the results suggest that straw- and bagasse-based medium and linerboard can present a higher carbon footprint than products made from virgin and recycled wood fibers. The main driver is the production of nonwood chemimechanical pulp. In addition, the lower capacity of nonwood residues to be recycled increases the overall impact. Finally, decisions around emissions allocation highly influence the results. This study helps mitigate part of the uncertainty around the environmental sustainability of corrugating medium and linerboard made from the selected nonwood residues.
Journal articles
Magazine articles
Life cycle carbon analysis of packaging products containing purposely grown nonwood fibers: A case study on the use of switchgrass pulp for linerboard and corrugating medium, TAPPI Journal March 2024
ABSTRACT: Sustainability is driving innovation in the pulp and paper industry to produce goods with lower carbon footprints. Although most of the efforts are currently focused on increasing energy efficiency or switching to renewable fuels, the attention toward alternative feedstocks has increased in recent years. Claims of nonwood fibers requiring lower use of chemicals and energy than wood fibers, along with negative consumer perceptions of tree felling, are helping purposely grown nonwoods to gain market share. The potential nonwood fiber environmental superiority over virgin or recycled wood fibers remains controversial and is often driven more by emotion and public perception rather than facts. This paper estimates the carbon footprint of corrugating medium and linerboard containing switchgrass pulp compared to analogous wood-based materials. The study includes a life cycle carbon analysis spanning from cradle to gate, which comprises stages for fiber production, pulping, papermaking, and corresponding transportation. Carbon footprints for virgin linerboard, recycled linerboard, virgin medium, and recycled medium were estimated at around 510, 620, 460, and 670 kg carbon dioxide equivalent per metric ton (kg CO2eq/t), respectively. Replacing 30% of the virgin or recycled material with switchgrass pulp translated into carbon footprint increases of around 60%, 45%, 62%, and 38%, respectively. Thus, for the proposed case study, the results suggest that switchgrass-based medium and linerboard can present a higher carbon footprint than products made from virgin and recycled wood fibers. The main driver is the production of nonwood mechanical pulp.This study was designed to mitigate part of the uncertainty around the environmental sustainability of medium and linerboard made from the selected purposely grown nonwood fibers.
Journal articles
Magazine articles
Viscoelastic web curl due to storage in wound rolls, TAPPI Journal July 2020
ABSTRACT: Winding is often the final operation in a roll-to-roll manufacturing process. Web materials, i.e., materials that are thin compared to their length, are wound into rolls because this form is the only practical means to store them. The resulting bending strains and associated stresses are large for thick webs and laminates. As many webs are viscoelastic on some time scale, bending stresses lead to creep and inhomogeneous changes in length. When the web material is unwound and cut into discrete samples, a residual curvature remains. This curvature, called curl, is the inability for the web to lie flat at no tension. Curl is an undesirable web defect that causes loss of productivity in a subsequent web process. This paper describes the development and implementation of modeling and experimental tools to explore and mitigate curl in homogenous webs. Two theoretical and numerical methods that allow the prediction of curl in a web are developed: a winding software based on bending recovery theory, and the implementation of dynamic simula-tions of winding. One experimental method is developed that directly measures the curl online by taking advantage of the anticlastic bending resulting from the curl. These methods are demonstrated for a low-density polyethylene web.
Journal articles
Magazine articles
Development of a fast brightness testing method for mechanical pulp based on microwave oven drying, TAPPI Journal June 2020
ABSTRACT: Brightness is an important quality parameter for pulp products, and it is important to have reliable measurement of pulp brightness in a timely manner for process control and/or quality control purposes. In these circumstances, a quick testing method for pulp brightness is highly desirable.A rapid handsheet brightness testing method for lignin-rich mechanical pulp has been developed, which is based on the use of tap water to make handsheets and microwave ovens to rapidly dry the handsheet. Microwave oven fast drying decreased the handsheet brightness of mechanical pulp by 5•6 points due to the lignin-originated discol-oration reactions. The spray of ascorbic acid and ethylenediaminetetraacetic acid (EDTA) solutions to the handsheet can effectively inhibit these lignin discoloration reactions.With 0.2% ascorbic acid and 0.2% EDTA spraying on the wet pulp handsheet, the brightness of the handsheet from a peroxide-bleached stone groundwood pulp after the microwave oven fast drying method was similar to that obtained from the same pulp but following TAPPI Standard Test Method T 272 sp-12 “Forming handsheets for reflectance testing of pulp (sheet machine procedure)”. The effect of handsheet dryness on the handsheet brightness was also studied, and the results showed that the brightness reading was almost constant in the dryness range of 70% to 90%. The method developed is a reliable, fast brightness testing method for lignin-rich pulp that is of practical interest in industrial operations.
Journal articles
Magazine articles
Integrated study of flue gas flow and superheating process in a recovery boiler using computational fluid dynamics and 1D-process modeling, TAPPI Journal June 2020
ABSTRACT: Superheaters are the last heat exchangers on the steam side in recovery boilers. They are typically made of expensive materials due to the high steam temperature and risks associated with ash-induced corrosion. Therefore, detailed knowledge about the steam properties and material temperature distribution is essential for improving the energy efficiency, cost efficiency, and safety of recovery boilers. In this work, for the first time, a comprehensive one-dimensional (1D) process model (1D-PM) for a superheated steam cycle is developed and linked with a full-scale three-dimensional (3D) computational fluid dynamics (CFD) model of the superheater region flue gas flow. The results indicate that: (1) the geometries of headers and superheater platens affect platen-wise steam mass flow rate distribution (3%•7%); and (2) the CFD solution of the 3D flue gas flow field and platen heat flux distribution coupled with the 1D-PM affect the platen-wise steam superheating temperature (45%•122%) and material temperature distribution (1%•6%). Moreover, it is also found that the commonly-used uniform heat flux distribution approach for the superheating process is not accurate, as it does not consider the effect of flue gas flow field in the superheater region. These new observations clearly demonstrate the value of the present integrated CFD/1D-PM modeling approach.
Journal articles
Magazine articles
Kinetics of sulfur dioxide-alcohol-water (SAW) pulping of su
Kinetics of sulfur dioxide-alcohol-water (SAW) pulping of sugarcane straw (SCS), TAPPI JOURNAL June 2017
Journal articles
Magazine articles
On the diagnosis of a fouling condition in a kraft recovery boiler: combining process knowledge and data-based insights, TAPPI Journal March 2023
ABSTRACT: Fouling is still a major challenge for the operation of kraft recovery boilers. This problem is caused by accumulation of ash deposits on the surfaces of heat exchangers in the upper part of the boiler over time. The first consequence is the reduction of steam production due to loss of heat transfer and, finally, the shutdown of the boiler due to clogging. The present work investigated the operational condition of a modern kraft boiler under a critical fouling condition. This boiler had even faced a manual cleaning due to a clogging event. This analysis combined process knowledge, plant team experience, and a data-driven approach, given the complexity of the process. In this sense, historical data covering this critical period of operation were collected. After a cleaning procedure, they were used to obtain a predictive neural network model for the flue gas pressure drop in the boiler bank, which is an indirect measure of ash deposit accumulation. Once validated, it was used for sensitivity analysis, with the aim of quantifying the effects of the model inputs. Five variables out of eighteen accounted for nearly 60% of the total effect on pressure drop. Namely, primary air temperature (21.6% of the total effect) and flow rate (11.1%), black liquor flow rate (9.9%) and temperature (8.4%), and white liquor sulfidity (8.6%). The analysis of these results mainly suggested an excess of carryover, which composes the ash deposits. Recommended actions to mitigate the fouling condition involved adjustments to the primary air system before the more drastic solution of reducing the boiler load.