Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1,901–1,910 of 1,947 results (Duration : 0.01 seconds)
Journal articles
Magazine articles
Open Access
Understanding the energy and emission implications of new technologies in a kraft mill: Insights from a CADSIM Plus simulation model, TAPPI Journal June 2024

ABSTRACT: Kraft mills play a vital role in energy transition because they have significant potential to reduce their own energy utilization and produce energy/products to decarbonize other sectors. Through biomass combustion and potential biogenic carbon emissions capture, these mills can contribute to offsetting emissions from other sectors. This research investigates the departmental and cross-departmental implications of technology upgrades on energy, steam, emissions, water, and chemicals using a CADSIM Plus simulation model. The model provides a comprehensive analysis of mass and energy balances, offering valuable insights into the benefits and limitations of each technology. The model facilitates scenario analysis and comparisons of process configurations, enabling data-driven decision-making for sustainable and competitive operations. Six high-impact technologies, including additional evaporator effects, weak black liquor membrane concentration, belt displacement washer for brownstock washing, oxygen delignification, and improvements to the pulp machine shoe press and vacuum pumps, are evaluated. Individual technologies resulted in energy savings of 1.2% to 5.4%, biomass consumption reductions of 8.6% to 31.6%, and total emissions reductions of 1.6% to 5.9%. Strategic decision-making must consider existing mill limitations, future technology implementation, and potential production increases. Future research will explore product diversification, biorefineries, and pathways to achieve carbon-negative operations, aiming to reduce emissions and secure a competitive future for kraft mills.

Journal articles
Magazine articles
Open Access
Pulp and paper mills: The original biorefineries — past performance and limitations to future opportunities, TAPPI Journal October 2023

ABSTRACT: Pulp mills have been biorefineries since the invention of the Tomlinson recovery boiler. Unfortunately, the paper industry has done a poor job explaining that concept to the general public. A number of bioproducts in everyday use have been produced by pulp mills for several decades, and new products are routinely being developed. Modern research efforts over the last couple of decades have focused on producing even more products from pulp and paper mills through capacity enhancement and the development of value-added products and liquid transportation fuels to enhance paper mill profitability. Some of these efforts, often referred to as modern biorefineries, have focused so heavily on product development that they have ignored operating and process realities that limit the transformation of pulp and paper mills from the current limited number of bioproducts produced today to economic scale production of these value-added products. In this paper, several of these limitations are addressed. In addition, there are several supply chain, marketing, product quality, and economic realities limiting the value potential for these wholesale conversions of pulp mills into multiproduct modern biorefineries. Finally, the conservative nature and capital intensity of the pulp and paper industries provide a difficult hurdle for conversion to the modern biorefinery concept. These issues are also reviewed.

Journal articles
Magazine articles
Open Access
Influence of tensile straining and fibril angle on the stiffness and strength of previously dried kraft pulp fibers, TAPPI JOURNAL July 2018

Influence of tensile straining and fibril angle on the stiffness and strength of previously dried kraft pulp fibers, TAPPI JOURNAL July 2018

Journal articles
Magazine articles
Open Access
Kraft recovery boiler operation with splash plate and/or beer can nozzles — a case study, TAPPI Journal Octobr 2021

ABSTRACT: In this work, we study a boiler experiencing upper furnace plugging and availability issues. To improve the situation and increase boiler availability, the liquor spray system was tuned/modified by testing different combinations of splash plate and beer can nozzles. While beer cans are typically used in smaller furnaces, in this work, we considered a furnace with a large floor area for the study. The tested cases included: 1) all splash plate nozzles (original operation), 2) all beer can nozzles, and 3) splash plate nozzles on front and back wall and beer cans nozzles on side walls. We found that operating according to Case 3 resulted in improved overall boiler operation as compared to the original condition of using splash plates only. Additionally, we carried out computational fluid dynamics (CFD) modeling of the three liquor spray cases to better understand the furnace behavior in detail for the tested cases. Model predictions show details of furnace combus-tion characteristics such as temperature, turbulence, gas flow pattern, carryover, and char bed behavior. Simulation using only the beer can nozzles resulted in a clear reduction of carryover. However, at the same time, the predicted lower furnace temperatures close to the char bed were in some locations very low, indicating unstable bed burning. Compared to the first two cases, the model predictions using a mixed setup of splash plate and beer can nozzles showed lower carryover, but without the excessive lowering of gas temperatures close to the char bed.

Journal articles
Magazine articles
CFD and predictive modeling of temperature and calcination in a rotary lime kiln • Potential for steadier kiln operation, TAPPI Journal October 2024

ABSTRACT: Rotary lime kilns are used in the pulp and paper industry to calcine lime mud to lime. Lime kiln models provide a means to understand the complex phenomena occurring within the kiln to aid in problem-solving during operation. A two-dimensional (2D) computational fluid dynamics (CFD) and one-dimensional (1D) bed model was previously developed for steady-state and transient analysis. This study explores data extracted from the model over a longer time period. The simulated outlet gas and shell temperature are compared to measured data for validation. The capability of using the model to estimate the production rate, accounting for the residence time within the kiln, is discussed. The maximum refractory wall temperature is analyzed during operation. Fluctuations in the calcination location are compared to outer shell heat-map data to correlate the calcination location and ring formation and growth. The model results to date indicate that fluctuations in the calcination zone may contribute to problematic ring growth, though a direct correlation has yet to be established. Additionally, a method for steadier kiln control is introduced and discussed. A machine learning model is also developed to predict the calcination start location from industrial data and is compared to the CFD model for validation. This model can generate results quickly and without the need for knowledge in CFD software and theory. Good agreement is found between the CFD and machine learning model during operation, with a mean absolute error (MAE) of 0.46 m, a mean absolute percentage error (MAPE) of 0.92%, and a root mean square error (RMSE) of 1.17 m.

Journal articles
Open Access
Materials performance considerations in hydrothermal liquefaction conversion of biomass, TAPPI Journal June 2025

ABSTRACT: Hydrothermal liquefaction (HTL) is a promising thermochemical route developed to convert woody biomass and biowaste to biochemicals and bio-oils. However, the operating conditions are rather harsh to biorefinery structural metallic components. These conditions include alkaline catalysts such as potassium carbonate (K2CO3); hot, pressurized (sub-critical) water reaction; and medium and aggressive anions chlorine (Cl•) and hydrogen sulfide (H•) released from biomass feedstocks. Thus, selection of suitable structural alloys for biorefinery components involves striking a balance between mechanical properties, corrosion resistance, and cost. Alloys currently being considered for this application include ferritic-martensitic steels and austenitic stainless steels. From a corrosion perspective in hot pressurized water, the former typically exhibits higher stress corrosion cracking resistance, whereas the latter exhibits higher corrosion resistance. This study reviews cost-effective corrosion control strategies aimed at increasing the chromium (Cr) content for protective surface oxide formation, as screened by testing in simulated HTL alkaline water, to support materials selection and design. Corrosion control strategies include surface modification (increasing surface Cr content), alloying (increasing bulk Cr content), and stainless-steel type (ferritic vs. austenitic). Of the alloys considered (including those subjected to surface modification), ferritic stainless steels exhibit a promising balance between corrosion and stress corrosion cracking resistance, adding another family of candidate alloys for structural biorefinery component materials selection and design.

Journal articles
Magazine articles
Open Access
How to use total dissolved solids measurements to evaluate the performance of diffuser washers—A mill study, TAPPI Journal April 2020

ABSTRACT: Various types of pulp washing equipment are available. Each washing device has a unique mechanical construction, and the washing principle is often a combination of dilution, thickening, and displacement washing. In this work, the performance of the pressure diffuser washer is studied. In stepwise trials, the effect of the feed and discharge consistencies on the performance of the diffuser was studied. The effect of the downward velocity of the screen on the pressure diffuser’s washing efficiency was also studied. The measurement of total dissolved solids (TDS) by a process refractometer was used as a wash loss measurement unit and the refractometer’s results were used in the calculations of standardized Nordén efficiency (E10) values. The chemical oxygen demand (COD) and conductivity values were also measured and their results compared to the TDS results.The results indicated that feed consistency has a significant effect on the performance and effectiveness of the diffuser washers in the mill. It can also be stated that when the downward velocity of the screen is adjusted to too high a level, the washing efficiency of the pressure diffuser decreases. As a conclusion from the mill tests, it can be stated that even small process parameter changes can provide enhanced diffuser washing at the beginning of the washing line, which has a direct effect on the performance of post-oxygen washing.

Journal articles
Magazine articles
Open Access
Mechanical modification of softwood pulp fibers using a novel lightweight vertical bar plate, TAPPI Journal April 2021

ABSTRACT: Refiner plates made using sand casting have a draft angle, which results in a trapezoidal bar shape. These trapezoidal bar plates have a limited throughput compared to the vertical bar plates, and eventually the edges of the bars become dull, resulting in longer time to reach the target freeness and shorter service life. The new light-weight refiner plate with a bar insertion method into a plate base was developed by selecting an aluminium-based alloy as the plate base material and a stainless steel alloy with high wear resistance as the bar material. The light-weight plate with sharp bar edges was very effective in reducing refining energy by reaching the target freeness faster than the sand-cast bar plate. Finally, the lightweight sharp bar plate, which weighed only about half the weight of the cast bar plate, was expected to significantly contribute to easy replacement, improved paper quality, and larger throughput without excessive loss of fiber length.

Journal articles
Magazine articles
Open Access
Effects of tissue additives on copy paper forming and properties, TAPPI Journal February 2024

ABSTRACT: Laboratory tests were conducted in an effort to determine the effects on paper machine process attributes and the properties of paper made from recycled copy paper furnish upon the addition of chemical agents that are commonly used in the production of hygiene tissue products. Due to continuing growth in tissue and towel grades of paper, such agents are experiencing greater usage. Charge titration test results revealed that certain dry strength agents associated with tissue manufacturing have the potential to shift the balance of charge in papermaking furnish to less negative or even positive values. Creping adhesive was found to contribute to fine particle retention, especially when present at relatively high levels. Release aid and a polyacrylate dispersant had the opposite effect. Low addition levels of both a creping adhesive and a debonding agent surprisingly increased a wide range of strength attributes of paper handsheets in comparison to sheets prepared from unaltered recycled copy paper furnish. The debonding agent decreased paper strength at higher levels of addition. Such effects appear to depend not only on the expected effects of agents themselves, but also on how they affect the charge balance of the wet-end system.

Journal articles
Magazine articles
Open Access
Modeling the dynamics of evaporator wash cycles, TAPPI Journal July 2024

ABSTRACT: Kraft pulping is a process that utilizes white liquor, composed of sodium sulfide (Na2S) and sodium hydroxide (NaOH), for wood delignification and pulp production. This process involves washing the dissolved organics and spent chemicals from the pulp, resulting in the generation of black liquor. Prior to its use as fuel in the recovery boiler, the black liquor is concentrated in multiple-effect evaporators. During the evaporation process, the inorganic salts present in the liquor become supersaturated and undergo crystallization. Fluctuations in sodium, carbonate, sulfate, and oxalate can give rise to severe sodium salt scaling events, which significantly impact the thermal efficiency of the evaporators, and ultimately, pulp production. Dynamic modeling provides insights into fluctuations in liquor chemistry in the evaporators. The primary objective of this study was to employ dynamic modeling to evaluate the effects of wash liquor recovery from evaporator wash cycles. The dynamics associated with wash cycles encompass variations in the concentrations of salts and solids in the recovered wash liquor, changes in the flow rate of wash liquor recovery, and fluctuations in liquor volume within the liquor tanks. The dynamic model was developed using Matlab Simulink and applied to the evaporation plant of a pulp mill in South America. By utilizing one month of mill process data, the model enabled the evaluation of fluctuations in liquor chemistry due to evaporator wash cycles. The developed model has demonstrated the potential to estimate the concentration of key ions responsible for scaling and to contribute to enhancements in evaporator washing strategies.