Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Value creation by converting pulp mill flue gas streams to green fuels, TAPPI Journal March 2023
ABSTRACT: Climate change mitigation induces strong growth in renewable electricity production, partly driven by shifts in environmental policies and regulation. Intermittent renewable electricity requires supporting systems in the form of sustainable hydrocarbon chemicals such as transportation fuels. Bulk chemical production fits well into a pulp mill environment, given their large volumes, stable operation, and ample supply of biomass-based carbon feed-stock in the form of flue gases. Until now, the utilization of the flue gases from conventional operation of a pulp mill has received little attention. Harnessing these flue gases into usable products could offer additional value to mill operators, while also diversifying their product portfolio. However, electricity-based fuels and products require extra energy in the conversion step and may not be commercially competitive with current fossil products under the current regulation. There might also be uncertainties about future commodity prices. Thus, the objective of this study is to estimate the economic competitiveness and the added value of selected side products that could be produced alongside conventional pulp and paper products. A typical modern pulp mill is modeled in different product configurations and operational environments, which allows testing of various development paths. This illustrates how the overall energy and mass balance of a pulp mill would react to changes in different final products and other parameters. The focus of the study is in synthetic methanol, which is produced from flue gases and excess resources from the mill, with minimal interference to the pulping process. The results aid in assessing the necessity and magnitude of a premium payment for subsidizing green alter-natives to replace current fossil fuels and chemicals. Additionally, the results function as an indicator of the development state of the pulp and paper industry in the turmoil of climate change regulation. The results indicate that power-to-X systems offer one more viable pathway alternative for broadening the product portfolio of the pulp and paper sector, as well as opening new flexibility measures and services to grid stabilization. Market conditions were found to have a significant impact on the perceived profitability.
Journal articles
Magazine articles
Advantages of lean duplex stainless steels in the pulp and paper industry, TAPPI Journal April 2023
ABSTRACT: The performance of lean duplex stainless steels has been utilized by the pulp and paper industry since their introduction to the market almost 20 years ago. Experience has shown that this group of stainless steels has exceptional performance in, for example, alkaline environments towards typical deterioration mechanisms, i.e., uniform corrosion and stress corrosion cracking. The chemistry of the “lean” duplex steels is designed so that the content of volatile and expensive elements like nickel and molybdenum can be reduced to an absolute minimum without sacrificing the technical performance. This reduces the raw material cost and most importantly provides predictability of the steel price, which is often challenging with conventional austenitic and duplex stainless steels.Thanks to a dual phase microstructure and high nitrogen content, lean duplex steels have at least two times higher strength compared to standard austenitic stainless steels. This is often a preferred feature in pulp and paper construction, as it enables lighter structures and less material to be utilized. Today, lean duplex steels are widely available in various dimensions, from thin cold rolled sheets up to thick hot rolled plates. Lean duplex steels are also fully recyclable after the decommissioning stage of the equipment, thereby contributing to the circular economy.
Journal articles
Magazine articles
Boiler retrofit improves efficiency and increases biomass firing rates, TAPPI Journal March 2021
ABSTRACT: Domtar’s fluff pulp mill in Plymouth, NC, USA, operates two biomass/hog fuel fired boilers (HFBs). For energy consolidation and reliability improvement, Domtar wanted to decommission the No. 1 HFB and refurbish/retrofit the No. 2 HFB. The No. 2 HFB was designed to burn pulverized coal and/or biomass on a traveling grate. The steaming capacity was 500,000 lb/h from coal and 400,000 lb/h from biomass. However, it had never sustained this design biomass steaming rate. As the sole power boiler, the No. 2 HFB would need to sustain 400,000 lb/h of biomass steam during peak loads. An extensive evaluation by a combustion and boiler technologies supplier was undertaken. The evaluation involved field testing, analysis, and computational fluid dynamics (CFD) modeling, and it identified several bottle-necks and deficiencies to achieving the No. 2 HFB’s biomass steam goal. These bottlenecks included an inadequate combustion system; insufficient heat capture; excessive combustion air temperature; inadequate sweetwater con-denser (SWC) capacity; and limited induced draft fan capacity.To address the identified deficiencies, various upgrades were engineered and implemented. These upgrades included modern pneumatic fuel distributors; a modern sidewall, interlaced overfire air (OFA) system; a new, larger economizer; modified feedwater piping to increase SWC capacity; replacement of the scrubber with a dry electrostatic precipitator; and upgraded boiler controls.With the deployment of these upgrades, the No. 2 HFB achieved the targeted biomass steaming rate of 400,000 lb/h, along with lowered stack gas and combustion air temperatures. All mandated emissions limit tests at 500,000 lb/h of steam with 400,000 lb/h of biomass steam were passed, and Domtar reports a 10% reduction in fuel firing rates, which represents significant fuel savings. In addition, the mill was able to decommission the No. 1 HFB, which has substantially lowered operating and maintenance costs.
Journal articles
Magazine articles
Commercially relevant water vapor barrier properties of high amylose starch acetates: Fact or fiction?, TAPPI Journal September 2021
ABSTRACT: Starches have recently regained attention as ecofriendly barrier materials due to the increased demand for sustainable packaging. They are easily processable by conventional plastics processing equipment and have been utilized for oil and grease barrier applications. While starches have excellent oxygen barrier properties and decent water barrier properties at low relative humidity (RH), they are moisture sensitive, as demonstrated by the deterioration of the barrier properties at higher RH values. Starch esters are chemically modified starches where the hydroxyl group of the starch has been substituted by other moieties such as acetates. This imparts hydrophobicity to starches and has been claimed as a good way of retaining water vapor barrier properties of starches, even at high RH conditions. We studied the water vapor barrier properties of one class of starch esters, i.e., high amylose starch acetates that were assumed to have good water vapor barrier properties. Our investigations found that with a high degree of substitution of hydroxyl groups, the modified starches did indeed show improvements in water vapor response as compared to pure high amylose starch films; however, the barrier properties were orders of magnitude lower than commercially used water vapor barriers like polyethylene. Even though these materials had improved water vapor barrier response, high amylose starch acetates are likely unsuitable as water vapor barriers by themselves, as implied by previous literature studies and patents.
Journal articles
Magazine articles
Addressing production bottlenecks and brownstock washer optimization via a membrane concentration system, TAPPI Journal July 2021
ABSTRACT: Advancements in membrane systems indicate that they will soon be robust enough to concentrate weak black liquor. To date, the economic impact of membrane systems on brownstock washing in kraft mills has not been studied and is necessary to understand the viability of these emerging systems and their best utilization.This study investigated the savings that a membrane system can generate related to brownstock washing. We found that evaporation costs are the primary barrier for mills seeking to increase wash water usage. Without these additional evaporation costs, we showed that our hypothetical 1000 tons/day bleached and brown pulp mills can achieve annual savings of over $1.0 MM when operating at higher dilution factors and fixed pulp production rate. We then investigated the impact of increasing pulp production on mills limited by their equipment. In washer-limited mill examples, we calculated that membrane systems can reduce the annual operating cost for a 7% production increase by 91%. Similarly, in evaporator-limited mill examples, membrane systems can reduce the annual operating cost for a 7% production increase by 86%. These results indicated that membrane systems make a production increase significantly more feasible for these equipment-limited mills.
Journal articles
Magazine articles
Understanding the risks and rewards of using 50% vs. 10% strength peroxide in pulp bleach plants, TAPPI Journal November 2018
Authors: Alan W. Rudie and Peter W. Hart | ABSTRACT: The use of 50% concentration and 10% concentration hydrogen peroxide were evaluated for chemical and mechanical pulp bleach plants at storage and at point of use. Several dangerous occurrences have been documented when the supply of 50% peroxide going into the pulping process was not stopped during a process failure. Startup conditions and leaking block valves during maintenance outages have also contributed to explosions. Although hazardous events have occurred, 50% peroxide can be stored safely with proper precautions and engineering controls. For point of use in a chemical bleach plant, it is recommended to dilute the peroxide to 10% prior to application, because risk does not outweigh the benefit. For point of use in a mechanical bleach plant, it is recommended to use 50% peroxide going into a bleach liquor mixing system that includes the other chemicals used to maintain the brightening reaction rate. When 50% peroxide is used, it is critical that proper engineering controls are used to mitigate any risks.
Journal articles
Magazine articles
Online measurement of bulk, tensile, brightness, and ovendry content of bleached chemithermomechanical pulp using visible and near infrared spectroscopy, TAPPI JOURNAL April 2018
Online measurement of bulk, tensile, brightness, and ovendry content of bleached chemithermomechanical pulp using visible and near infrared spectroscopy, TAPPI JOURNAL April 2018
Journal articles
Conversion of paper-grade pulp from rice straw into dissolving pulp, TAPPI Journal June 2025
ABSTRACT: About 1,165 million metric tons of rice straw is generated every year worldwide, which can be a good source for the circular bioeconomy. In this research paper, the paper-grade pulp from rice straw was converted to dissolving-grade pulp by fractionation in a biorefinery initiative. Rice straw was cooked at an optimum condition of 8% potassium hydroxide (KOH) charge for 120 min at 150°C and produced a pulp yield of 47.2% with a kappa number of 18.5. Subsequently, D0(EP)D1 bleaching was carried out for the produced pulp, and the brightness of the pulp reached to 82.4%. From the black liquor, 16.5% of the lignin and 11.9% of the hemicellulose were isolated for producing biobased products and chemicals, and then the spent liquor was used for soil amendment. The bleached pulp was fractionated in a Bauer McNett fiber classifier. The pulp fibers retained on 16-, 30-, and 50-mesh screens were used as a longer fiber fraction pulp, and pulp fibers retained on 100- and 200-mesh screens were used as a shorter fiber pulp. The longer and shorter fiber fraction pulps were analyzed for cellulose, R10, pentosan, and viscosity. The long fiber fraction pulps were characterized by higher cellulose (88.2% vs. 83.1%) and lower pentosan (11.3% vs. 13.0%) content than the shorter fiber fraction pulps. The longer fiber fraction was further treated with cold KOH to remove residual hemicellulose. The KOH extraction reduced pentosan content in pulp to 6.3% and increased á-cellulose content to 91.3%. The short fiber fraction was converted to monomeric sugars using cellulase enzymes with varying reaction time, temperature, and consistency. The efficiency of cellulase activity was assessed through glucose yield and residual dry weight. A temperature of 45°C, 5.0 pH, 5% consistency, and 6 filter paper units/gram (FPU/g) o.d. pulp resulted in maximum sugar conversion of 85.7%.
Journal articles
Magazine articles
Kraft recovery boiler operation with splash plate and/or beer can nozzles — a case study, TAPPI Journal October 2021
ABSTRACT: In this work, we study a boiler experiencing upper furnace plugging and availability issues. To improve the situation and increase boiler availability, the liquor spray system was tuned/modified by testing different combinations of splash plate and beer can nozzles. While beer cans are typically used in smaller furnaces, in this work, we considered a furnace with a large floor area for the study. The tested cases included: 1) all splash plate nozzles (original operation), 2) all beer can nozzles, and 3) splash plate nozzles on front and back wall and beer cans nozzles on side walls. We found that operating according to Case 3 resulted in improved overall boiler operation as compared to the original condition of using splash plates only. Additionally, we carried out computational fluid dynamics (CFD) modeling of the three liquor spray cases to better understand the furnace behavior in detail for the tested cases. Model predictions show details of furnace combus-tion characteristics such as temperature, turbulence, gas flow pattern, carryover, and char bed behavior. Simulation using only the beer can nozzles resulted in a clear reduction of carryover. However, at the same time, the predicted lower furnace temperatures close to the char bed were in some locations very low, indicating unstable bed burning. Compared to the first two cases, the model predictions using a mixed setup of splash plate and beer can nozzles showed lower carryover, but without the excessive lowering of gas temperatures close to the char bed.
Journal articles
Magazine articles
Application of ATR-IR measurements to predict the deinking efficiency of UV-cured inks, TAPPI Journal January 2022
ABSTRACT: In recent years, ultraviolet (UV)-curable ink has been developed and widely used in various printing applications. However, using UV-printed products (UV prints) in recovered paper recycling causes end-product dirt specks and quality issues. A new method was developed that can distinguish UV prints from other prints by means of attenuated total reflectance infrared (ATR-IR) spectroscopy. Application of this method could allow more efficient use of UV prints as raw materials for paper recycling.First, a mill trial was performed using UV prints alone as raw materials in a deinked pulp (DIP) process. Second, test prints were made with four types of UV inks: a conventional UV ink and three different highly-sensitive UV inks. Each print sample had four levels of four-color ink coverage patterns (100%, 75%, 50%, and 25%). Next, deinkability of all prints was evaluated by laboratory experiments. Finally, each print was measured using the ATR-IR method, and the relationship between the IR spectra and deinkability was investigated. Mill trial results showed that UV prints caused more than 20 times as many dirt specks as those printed with conventional oil-based ink. There were variations in recycling performance among UV prints taken from bales used for the mill trial. Lab tests clearly revealed that not all UV-printed products lead to dirt specks. In order to clarify the factors that affected deinkability of UV prints, the print samples were investigated by lab experiments. Key findings from lab experiments include: • The number of dirt specks larger than 250 µm in diameter increased as the ink coverage increased. • Higher ink coverage area showed stronger intensity of ATR-IR spectral bands associated with inks. These results indicate that deinkability of UV prints could be predicted by analysis of ATR-IR spectra. • Finally, the method was applied for assessment of recovered paper from commercial printing presses. It was confirmed that this method made it possible to distinguish easily deinkable UV prints from other UV prints. Based on these findings, we concluded that the ATR-IR method is applicable for inspection of incoming recovered paper.