Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Crossflow filtration of green liquor for increased pulp production, improved green liquor quality, and energy savings, TAPPI JOURNAL October 2020
ABSTRACT: A new green liquor filtration system has been installed and commissioned at the Ence pulp mill in Pontevedra, Spain. The filtration system is based on microfiltration and was developed in collaboration with the KTH Royal Institute of Technology in Stockholm, Sweden. The patented method for efficient purification of green liquor decreases the non-process element (NPE) content by providing more efficient solids/liquid separation, reducing energy and chemical consumption in pulp mills and increasing production capacity by eliminating certain capacity bottlenecks. The process has been continuously tested at the Aspa Bruk Mill outside Askersund, Sweden, since 2013. The technology has proven to create nearly particulate-free green liquor during the purification process. The technology can also be used to polish white liquor to provide higher pulp quality.To provide for a simple and cost-effective installation, the system was designed as a skid-mounted unit that is pre-piped, instrumented, and tested before shipment. The system is modular and allows for easy expansion of capacity. This paper discusses the process design, process integration, and startup of the new system, along with experiences from the first months of operation.
Journal articles
Magazine articles
Using bleaching stage models for benchmarking hardwood ECF bleach plants, TAPPI Journal October 2023
ABSTRACT: Steady-state models estimated the performance of the D0(EOP)D1 bleach sequence at two mixed hardwood bleach plants in the southern United States. At Mill 1, the full sequence’s chlorine dioxide charge that brightens the pulp to ~84% ISO was monitored for two weeks. Mill 2 considered the partial sequence that brightens the pulp to ~86% ISO for nearly four weeks. Elevated levels of chlorine dioxide were linked to increased washer carryover in brownstock and extraction areas. For Mills 1 and 2, an extra 0.24% and 0.33% chlorine dioxide was consumed in the D0 stage. This extra bleach demand was equivalent to an additional 4.8 and 5.5 kappa load to the brownstock, respectively. Some differences were observed for the D1 stage. Mill 1 had extraction carryover that averaged 1.1 units higher than was measured, contributing to use of an extra 0.22% of chlorine dioxide. Mill 2 had extraction carryover that averaged between 0 and 0.7 kappa units and consumed up to 0.13% more chlorine dioxide. Another data set from Mill 2 showed high brownstock and extraction carryover, leading to ~0.90% more total chlorine dioxide usage to brighten to 84% ISO. Overall, this investigation illustrated that the models could be employed as benchmarks.
Journal articles
Magazine articles
Online monitoring of the size distribution of lime nodules in a full-scale operated lime kiln using an in-situ laser triangulation camera, TAPPI Journal June 2024
ABSTRACT: To maximize efficiency of the recausticizing process in a pulp mill, producing a reburned lime with high and consistent reactivity is process critical. Prior investigations have demonstrated a correlation between the reactivity of lime and its nodule size, as well as the dusting behavior of the kiln. Therefore, monitoring the nodule size produced in the lime kiln could be a promising indirect method to measure the performance of the lime kiln. The objective of this investigation was to evaluate the utility of a laser triangulation camera for online monitoring of nodule size distribution for the lime kiln. A series of full-scale trials were performed in a lime kiln of a kraft pulp mill in which a camera was installed at the exit conveyor to analyze the lime discharging from the kiln. The nodule size distribution was analyzed for correlation with the lime temperature, flue gas temperature, and rotational speed of the kiln. The monitoring demonstrated temporal stability, and the results showed that the lime temperature had the most significant effect on the nodule size. The rotational speed of the lime kiln and the flue gas temperature showed limited effect on nodule size, but they had significant impact on the specific energy demand. The overall conclusion of the study is that the camera methodology effectively correlates lime temperature with nodule size distribution, and it advocates for the methods of implementation in automating lime temperature control, facilitating the production of consistently reactive lime at a lower specific energy consumption.
Journal articles
Magazine articles
Factors affecting phosphorus uptake/dissolution during slaking and causticizing, TAPPI Journal March 2024
ABSTRACT: Hydroxide is regenerated in the recovery cycle of kraft pulp mills by the addition of lime (CaO) to green liquor. Phosphate in green liquor can react with the lime during slaking/causticizing. Total titratable alkali (TTA), sulfidity, the concentration of phosphate in the green liquor, temperature, and the liming ratio were all variables explored in this work to determine their influence on phosphorus uptake and dissolution. Experiments were also run in which the lime was slaked before being added to the green liquor to separate reactions with phosphate during slaking and reactions that occur during causticizing. Both reburnt lime and technical grade CaO were used. The experiment results indicate that phosphorus primarily reacts with slaked lime (Ca(OH)2), and that the final concentration of phosphate in the white liquor at the end of slaking and causticizing is nearly independent of the initial concentration of phosphorus and only mildly dependent on the carbonate concentration in the green liquor. There do appear to be differences in the rate at which phosphate reacts with reburnt lime and technical grade CaO, though the reason for this was not determined.
Journal articles
Magazine articles
Effects of different soda loss measurement techniques on brownstock quality, TAPPI Journal July 2024
ABSTRACT: The efficiency of the kraft recovery plant, bleaching process, and paper machine are affected when black liquor carryover from the brownstock washers is not controlled well. Measuring soda loss within a mill can vary from using conductivity, either in-situ or with a lab sample of black liquor filtrate squeezed from the last stage washer, to measuring absolute sodium content with a lab sodium specific ion probe or spectrophotometer. While measuring conductivity has value in tracking trends in black liquor losses, it is not an acceptable method in reporting losses in absolute units, typically in lb/ton of pulp. This is further complicated when trying to benchmark soda loss performance across a fleet of mills with multiple washer lines. Not only do the testing methods vary, but the amount of bound soda on high kappa pulps can be significant. This variability creates inconsistent results, and studies are needed to understand the effect of different testing methods on the pulp quality. In this study, soda loss is expressed as sodium sulfate (Na2SO4). Four different methods to measure soda content in pulp off commercial brownstock washers were studied: full digestion (FD), washing soaking overnight and washing (WSW), soaking in boiling water and stirring 10-min (SW-10), and squeeze-no wash (Sq). Total, washable, and bound sodium sulfate calculations were determined for each soda content measuring technique using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results showed bound and washable sodium sulfate amounts significantly depend on which soda measurement technique was used. In addition, the soda results were correlated with the pulp kappa numbers. As the kappa number increases, bound soda increases, regardless of the soda measurement method used. Impacts of high sodium sulfate in brownstock are also discussed.
Journal articles
Magazine articles
Understanding extensibility of paper: Role of fiber elongation and fiber bonding, TAPPI Journal March 2020
ABSTRACT: The tensile tests of individual bleached softwood kraft pulp fibers and sheets, as well as the micro-mechanical simulation of the fiber network, suggest that only a part of the elongation potential of individual fibers is utilized in the elongation of the sheet. The stress-strain curves of two actual individual pulp fibers and one mimicked classic stress-strain behavior of fiber were applied to a micromechanical simulation of random fiber networks. Both the experimental results and the micromechanical simulations indicated that fiber bonding has an important role not only in determining the strength but also the elongation of fiber networks. Additionally, the results indicate that the shape of the stress-strain curve of individual pulp fibers may have a significant influence on the shape of the stress-strain curve of a paper sheet. A large increase in elongation and strength of paper can be reached only by strengthening fiber-fiber bonding, as demonstrated by the experimental handsheets containing starch and cellulose microfibrils and by the micromechanical simulations. The key conclusion related to this investigation was that simulated uniform inter-fiber bond strength does not influence the shape of the stress-strain curve of the fiber network until the bonds fail, whereas the number of bonds has an influence on the activation of the fiber network and on the shape of the whole stress-strain curve.
Journal articles
Magazine articles
Lignin-based resins for kraft paper applications, TAPPI Journal November 2019
ABSTRACT: We investigated miscanthus (MS) and willow (W) lignin-furfural based resins as potential reinforce-ment agents on softwood and hardwood kraft paper. These resins might be sustainable alternatives to the commercial phenolformaldehyde (PF) resins. Phenol is a petrochemical product and formaldehyde has been classified as a carcinogen by the U.S. Environmental Protection Agency. The lignin used in this study was derived from hot water extraction (160ºC, 2 h) of MS and W biomass, and may be considered sulfur-free. These biorefinery lignins were characterized for their chemical composition and inherent properties via wet chemistry and instrumental techniques. The resin blends (MS-resin and W-resin) were characterized for their molecular weight, thermal behavior, and mechanical properties. Mechanical properties were measured by the resin’s ability to reinforce softwood and hard-wood kraft papers. The effect of adding hexamethylenetetramine (HMTA), a curing agent, to the resin was also examined. Mixtures of PF and lignin-based resins were investigated to further explore ways to reduce use of non-renewables, phenol, and carcinogenic formaldehyde. The results show that lignin-based resins have the potential to replace PF resins in kraft paper applications. For softwood paper, the highest strength was achieved using W-resin, without HMTA (2.5 times greater than PF with HMTA). For hardwood paper, MS-resin with HMTA gave the highest strength (2.3 times higher than PF with HMTA). The lignin-based resins, without HMTA, also yielded mechanical properties comparable to PF with HMTA.
Journal articles
Magazine articles
Cross-flow separation characteristics and piloting of graphene oxide nanofiltration membrane sheets and tubes for kraft black liquor concentration, TAPPI Journal September 2023
ABSTRACT: Dewatering of weak black liquor (WBL) in the kraft cycle by evaporation is highly energy intensive. Membranes are an attractive alternative for energy-efficient dewatering, but existing commercial polymeric or ceramic membranes are either degraded in BL or have high capital costs. Our recent works have demonstrated the engineering of graphene oxide (GO) nanofiltration membranes, their stability and promising performance in BL conditions, and preliminary scale-up into sheets and tubes. Here, we describe in detail the separation characteristics of GO membrane sheets and tubes under real BL conditions and crossflow operation. Recycle-mode piloting of a GO tubular membrane showed average “production flux” of 16 L/m2/h (LMH) and high rejections of lignin (98.3%), total solids (66%), and total organic carbon (83%), with no signs of irreversible fouling identified. A corresponding GO sheet membrane produced an average flux of ~25 LMH and maintained high lignin rejection of ~97% during a slipstream pilot at a kraft mill site using WBL with ~16 wt% total solids (TS). Finally, we piloted a Dow/DuPont XUS1808 polyamide composite reverse osmosis (RO) membrane for last-mile processing of the GO nanofiltration membrane permeate. The RO membrane showed a steady state flux of 19 LMH at 65 bar and produced ~0.02 wt% TS water product, which is highly suitable for reuse in pulp washing operations in the kraft process. The results have strong positive implications for the industrial application of GO membranes in BL concentration and other related applications.
Journal articles
Magazine articles
Compression refining: the future of refining? Application to Nordic bleached softwood kraft pulp, TAPPI Journal August 2024
ABSTRACT: A new compression refining technology based on the kneading of high consistency pulp has been selected and tested in various conditions with a model Nordic bleached softwood kraft (NBSK) pulp. The method uses a kneader mixer referred to as the ultra continuous mixer (UCM) to condition the pulp. Its performance levels were also compared with those obtained with traditional low consistency (LC) refining of the same pulp.Compression refining of the NBSK pulp with the UCM led to a much better °SR/strength compromise than conventional LC refining. High strength properties can also be achieved by compression refining, in a range similar to/or better than LC refining. The higher the strength required, the greater the advantages of this technology: for a given strength, a difference of up to 10°SR can be obtained as compared to LC refined pulp. Moreover, a higher tear index can be obtained with compression refining, since fiber cutting is greatly reduced.The lower °SR is due to the release of fewer cellulosic fines, which also results in the manufacturing of new papers combining a high strength and a high permeability that cannot be obtained with traditional LC refining. Indeed, with LC refining, a high strength is generally associated with a low permeability. Upscaling this technology seems to be possible since large production devices are already on the market for applications other than paper/pulp. With this new pulp behavior, papermakers will have to learn to think differently, as paper strength and °SR can now be decorrelated.
Journal articles
Magazine articles
A case study review of wood ash land application programs in North America, TAPPI Journal February 2021
ABSTRACT: Several regulatory agencies and universities have published guidelines addressing the use of wood ash as liming material for agricultural land and as a soil amendment and fertilizer. This paper summarizes the experiences collected from several forest products facility-sponsored agricultural application programs across North America. These case studies are characterized in terms of the quality of the wood ash involved in the agricultural application, approval requirements, recommended management practices, agricultural benefits of wood ash, and challenges confronted by ash generators and farmers during storage, handling, and land application of wood ash.Reported benefits associated with land-applying wood ash include increasing the pH of acidic soils, improving soil quality, and increasing crop yields. Farmers apply wood ash on their land because in addition to its liming value, it has been shown to effectively fertilize the soil while maintaining soil pH at a level that is optimal for plant growth. Given the content of calcium, potassium, and magnesium that wood ash supplies to the soil, wood ash also improves soil tilth. Wood ash has also proven to be a cost-effective alternative to agricultural lime, especially in rural areas where access to commercial agricultural lime is limited. Some of the challenges identified in the review of case studies include lengthy application approvals in some jurisdictions; weather-related issues associated with delivery, storage, and application of wood ash; maintaining consistent ash quality; inaccurate assessment of required ash testing; potential increased equipment maintenance; and misconceptions on the part of some farmers and government agencies regarding the effect and efficacy of wood ash on soil quality and crop productivity.