Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 21,041–21,050 of 21,268 results (Duration : 0.022 seconds)
Effects of the Partial Replacement of SB latex with Dextrin Starch on the Thickness Distribution of Coating Layers, 2008 Advanced Coating Fundamentals Symposium

Effects of the Partial Replacement of SB latex with Dextrin Starch on the Thickness Distribution of Coating Layers, 2008 Advanced Coating Fundamentals Symposium

Novel Particle Size Characterization of Coating Pigments: Comparing Acoustic Spectroscopy with Laser Light Scattering and Sedimentation Techniques, 2008 Advanced Coating Fundamentals Symposium

Novel Particle Size Characterization of Coating Pigments: Comparing Acoustic Spectroscopy with Laser Light Scattering and Sedimentation Techniques, 2008 Advanced Coating Fundamentals Symposium

Plastics Recycling: Looking Ahead, 1991 Hot Melt Symposium Proceedings

Plastics Recycling: Looking Ahead, 1991 Hot Melt Symposium Proceedings

Open Access
The effect of pulp screening on oxygen delignification of high lignin content pulps, TAPPI Journal October 2025

Application: Yield can be improved and energy demand reduced in the kraft pulping process by terminating cooking at a high kappa number and applying oxygen delignification directly to unscreened pulp. This study demonstrates that oxygen delignification is effective on high-lignin-content pulps without prior screening and without compromising the pulp properties.

Journal articles
Optimizing Water and water vapor barrier properties of water-based barrier coatings

Functional coatings are applied to paper and paperboard substrates to provide resistance, or a barrier, against media such as oil and grease (oil and grease resistance; OGR), water, water vapor (moisture vapor transmission rate; MVTR), and oxygen, for applications such as food packaging, food service, and other non-food packaging. Typical functional barrier coatings can be created by applying a solid coating or extruded film, a solvent-based coating, or a water-based coating to the paper substrate using various means of coating applicators. Today, there is increasing interest in developing recyclable and more sustainable approaches to producing these types of packages. This paper focuses on water-based barrier coatings (WBBC) for water resistance and MVTR for medium barrier performance. The main goal was to improve the performance of existing barrier polymers using additives such as waxes. Barrier coated systems were evaluated in single layer laboratory coating studies. This paper reviews examples of improving the performance of barrier polymers studied, including styrene butadiene and styrene acrylate, using wax additives. Regulatory challenges with paraffin waxes have resulted in the focus on bio-waxes. The results showed that small amounts of bio-wax can significantly improve barrier properties, especially for water resistance and MVTR. The choice of the best combination of binder and wax is essential. The influence of the bio-wax additive on blocking tendency, coldset glue strength, or heat seal strength is negligible.

Journal articles
Magazine articles
Open Access
Modeling the dynamics of evaporator wash cycles, TAPPI Journal July 2024

ABSTRACT: Kraft pulping is a process that utilizes white liquor, composed of sodium sulfide (Na2S) and sodium hydroxide (NaOH), for wood delignification and pulp production. This process involves washing the dissolved organics and spent chemicals from the pulp, resulting in the generation of black liquor. Prior to its use as fuel in the recovery boiler, the black liquor is concentrated in multiple-effect evaporators. During the evaporation process, the inorganic salts present in the liquor become supersaturated and undergo crystallization. Fluctuations in sodium, carbonate, sulfate, and oxalate can give rise to severe sodium salt scaling events, which significantly impact the thermal efficiency of the evaporators, and ultimately, pulp production. Dynamic modeling provides insights into fluctuations in liquor chemistry in the evaporators. The primary objective of this study was to employ dynamic modeling to evaluate the effects of wash liquor recovery from evaporator wash cycles. The dynamics associated with wash cycles encompass variations in the concentrations of salts and solids in the recovered wash liquor, changes in the flow rate of wash liquor recovery, and fluctuations in liquor volume within the liquor tanks. The dynamic model was developed using Matlab Simulink and applied to the evaporation plant of a pulp mill in South America. By utilizing one month of mill process data, the model enabled the evaluation of fluctuations in liquor chemistry due to evaporator wash cycles. The developed model has demonstrated the potential to estimate the concentration of key ions responsible for scaling and to contribute to enhancements in evaporator washing strategies.

Journal articles
Magazine articles
Open Access
Online monitoring of the size distribution of lime nodules in a full-scale operated lime kiln using an in-situ laser triangulation camera, TAPPI Journal June 2024

ABSTRACT: To maximize efficiency of the recausticizing process in a pulp mill, producing a reburned lime with high and consistent reactivity is process critical. Prior investigations have demonstrated a correlation between the reactivity of lime and its nodule size, as well as the dusting behavior of the kiln. Therefore, monitoring the nodule size produced in the lime kiln could be a promising indirect method to measure the performance of the lime kiln. The objective of this investigation was to evaluate the utility of a laser triangulation camera for online monitoring of nodule size distribution for the lime kiln. A series of full-scale trials were performed in a lime kiln of a kraft pulp mill in which a camera was installed at the exit conveyor to analyze the lime discharging from the kiln. The nodule size distribution was analyzed for correlation with the lime temperature, flue gas temperature, and rotational speed of the kiln. The monitoring demonstrated temporal stability, and the results showed that the lime temperature had the most significant effect on the nodule size. The rotational speed of the lime kiln and the flue gas temperature showed limited effect on nodule size, but they had significant impact on the specific energy demand. The overall conclusion of the study is that the camera methodology effectively correlates lime temperature with nodule size distribution, and it advocates for the methods of implementation in automating lime temperature control, facilitating the production of consistently reactive lime at a lower specific energy consumption.