Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Event Type
Collections
Journal articles
The influence of precoating layers on the performance of water-based barrier coatings, TAPPI Journal January 2025
Cellulose nanofibrils (CNF) on paper have been demonstrated to be an effective barrier against oxygen and grease and have been shown to improve the barrier performance of dispersion-based barrier coatings. The potential to produce paper grades that have good oxygen, grease, and moisture barrier properties is clear, but a better understanding of the synergies between CNF, other coating layers, and water-based barrier coatings (WBBC) is needed to optimize these systems. Different coat weights of a commercial WBBC were applied to papers that have a range of different qualities and thicknesses of CNF precoating layers. The same WBBC was also applied to pigmented coated paper, with various types of pigments and latex levels. Samples were characterized in terms of grease resistance, water vapor transmission rate (WVTR), and oxygen transmission rate (OTR) before and after folding. The results were contrasted to cases where the WBBC was applied to the paper with no precoating layer. When the WBBC is applied on a CNF layer or the pigmented coating layer, the performance of the WBBC for the water vapor barrier improves a significant amount compared to when the WBBC is applied to the base paper with no precoating layer. This improvement likely comes from these precoating layers filling in the large paper pores, which leads to the WBBC forming a continuous layer at low coat weights. Folding decreases the moisture barrier performance to some degree, but the grease resistance is not influenced by folding when a CNF precoating layer is involved. Oxygen barrier properties are moderate for the CNF layer alone and are less than 5 cm3/m2/day when WBBC is coated on the CNF layer. This result likely comes from the barrier coating’s ability to repair defects in the CNF layer to stop the easy passage of oxygen in defect regions of the sample.
Journal articles
Local delamination in pharmaceutical blister packages • A thermomechanical theory on buckling of heat-sealed composite laminates in flexible packaging, TAPPI Journal July 2025
ABSTRACT: Pharmaceutical blister packages consist of cavities made from a thick polymeric form foil and a thin aluminum lid foil. Heat-sealing technology is usually used to bond the lid foil to the form foil. Occasionally, the sealed area shows buckling defects of the lid foil, which allow contamination to enter into the cavity. A contaminated product is a worst-case scenario for pharmaceutical production and must be avoided. We discuss a thermomechanical theory on buckling defects in blister packages and derive strategies to avoid these. The theory is based on the assumption that the seal of a blister packaging behaves like a laminate of thin composite layers under compressive load. Literature research on buckling of thin laminated films, thermal behavior of polymers, and seal strength of heat-sealed polymers provides the technical and physical background to elaborate the theory. The theory comprises three elements: an initial condition regarding thermal load and precedent defects; a buckling condition; and a crack propagation condition. The plausibility of the theory is verified using model calculations and heat-seal tests. The paper concludes with strategies against buckling of heat-sealed lid foils and an outlook on other applications in laminating and coating of polymer films.
Journal articles
Materials performance considerations in hydrothermal liquefaction conversion of biomass, TAPPI Journal June 2025
ABSTRACT: Hydrothermal liquefaction (HTL) is a promising thermochemical route developed to convert woody biomass and biowaste to biochemicals and bio-oils. However, the operating conditions are rather harsh to biorefinery structural metallic components. These conditions include alkaline catalysts such as potassium carbonate (K2CO3); hot, pressurized (sub-critical) water reaction; and medium and aggressive anions chlorine (Cl•) and hydrogen sulfide (H•) released from biomass feedstocks. Thus, selection of suitable structural alloys for biorefinery components involves striking a balance between mechanical properties, corrosion resistance, and cost. Alloys currently being considered for this application include ferritic-martensitic steels and austenitic stainless steels. From a corrosion perspective in hot pressurized water, the former typically exhibits higher stress corrosion cracking resistance, whereas the latter exhibits higher corrosion resistance. This study reviews cost-effective corrosion control strategies aimed at increasing the chromium (Cr) content for protective surface oxide formation, as screened by testing in simulated HTL alkaline water, to support materials selection and design. Corrosion control strategies include surface modification (increasing surface Cr content), alloying (increasing bulk Cr content), and stainless-steel type (ferritic vs. austenitic). Of the alloys considered (including those subjected to surface modification), ferritic stainless steels exhibit a promising balance between corrosion and stress corrosion cracking resistance, adding another family of candidate alloys for structural biorefinery component materials selection and design.
Journal articles
Effect of xylan on the mechanical performance of softwood kraft pulp 2D papers and 3D foams, TAPPI Journal March 2025
ABSTRACT: Pulp fibers are paramount in paper products and have lately seen emerging use in fiber foams. Xylan, an integral component in pulp fibers, is known to contribute to paper strength, but its effect on the strength of pulp fiber foams remains less explored. In this study, we investigate the role of xylan in both 2D handsheets and 3D foams. For a softwood kraft pulp, we enzymatically removed 1% from pulp fibers and added 3% xylan to them by adsorption, corresponding to approximately a decrease of a tenth and an increase of a third of the total xylan content. The mechanical properties of 2D fiber networks, i.e., handsheets, made using the xylan-enriched pulp improved, particularly regarding tensile strength and Young’s modulus; however, the decrease in mechanical properties of handsheets made from enzymatically- treated xylan-depleted pulp was more pronounced. In 3D networks • pulp fiber foams, much less fiber-fiber contacts formed, and thus the mechanical properties were not as much influenced by removal of xylan. Furthermore, the presence of the required surfactant on the fibers, acting as debonding agent, overshadows any positive effect xylan might have on fiber-fiber bonding. We propose that the improved mechanical properties for the sheets result from a combination of an increased number of fiber-fiber bonds and higher sheet density, while the deterioration in mechanical properties of handsheets comprising enzymatically-treated fibers is caused by the opposite effect.
Journal articles
Predictive advisory solutions for chemistry management, control, and optimization, TAPPI Journal March 2025
ABSTRACT: Process runnability and end-product quality in paper and board making are often connected to chemistry. Typically, monitoring of the chemistry status is based on a few laboratory measurements and a limited number of online specific chemistry-related measurements. Therefore, mill personnel do not have real-time transparency of the chemistry related phenomena, which can cause production instability, including deposition, higher chemical consumption, quality issues in the end-product and runnability problems. Machine learning techniques have been used to establish soft sensor models and to detect abnormalities. Furthermore, these soft sensors prove to be most useful when combined with expert-driven interpretation. This study is aimed at utilizing a hybrid solution comprising chemistry and physics models and machine learning models for stabilizing chemistry-related processes in paper and board production. The principal idea is to combine chemistry/physics models and machine learning models in a fashion close to white box modeling. A cornerstone in the approach is to formulate explanations of the findings from the models; that is, to explain in plain text what the findings mean and how operational changes can mitigate the identified risks. The approach has been demonstrated for several different applications, including deposit control in the wet end, both raw water treatment and usage, and wastewater treatment. This approach provides mill personnel with knowledge of identified phenomena and recommendations on how to stabilize chemistry-related processes. Instead of using close to black box machine learning models, a hybrid solution including chemistry/physics models can enhance the performance of artificial intelligence (AI) deployed systems. A successful way of gaining the trust from mill personnel is by creating a plain text explanation of the findings from the hybrid models. The correlation between the likelihood of a phenomena and disturbance and the explanations are derived and validated by application and chemistry and physics experts.
Energy saving potential of interstage screen fractionation for production of board grade BCTMP, TAPPI Journal August 2023
Over the last few decades, the continuing decline in mechanical pulp-based grades has led pulp producers to modify operations and implement measures to reduce production costs in order to stay competitive. In spite of a considerable effort to reduce energy consumption, the latter is still a major portion of production costs in the process of making bleached chemithermomechanical pulp (BCTMP). In this study, we evaluated the impact of interstage screening fractionation (ISSF) and secondary refining strategy for producing BCTMP with the objective of reducing refining energy consumption while maintaining or improving bulk and strength properties. In the first step and to establish a baseline for a mill’s existing configuration, the collected primary refined pulp and reject streams from the ISSF were refined in a high consistency (HC) refiner to target freeness levels. The accepts and refined rejects streams were recombined, and their properties were compared to those of the refined primary pulp. The results showed that, at a given freeness of 400 mL and compared to the control case (without fractionation), the ISSF using an 0.070 in. basket followed by rejects refining could lead to about 25% energy saving in the second stage HC refining. Handsheet properties showed that utilization of ISSF could produce BCTMP with higher bulk and similar average fiber length and tear index. However, a slight reduction in tensile strength was observed. In the second set of trials, the primary refined pulp and the rejects from the ISSF using the 0.070 in. basket were refined by a low-consistency (LC) refiner. The results showed that, at the same freeness of 400 mL and compared to refined primary pulp, the ISSF saved about 26% in net LC refining energy. At a specific edge load (SEL) of 0.4 J/m, the produced pulp had similar bulk and strength properties compared to those of the control sample. A higher SEL of 0.6 J/m in LC refining could further decrease net refining energy consumption; however, it also led to reduction in fiber length, bulk, and strength properties.
SCC susceptibility of chromized type 409 stainless steel in alkaline chloride solutions at ambient temperature and pressure, TAPPI Journal August 2023
ABSTRACT: Biomass hydrothermal liquefaction (HTL) is operated in a harsh reaction medium that contains hot pressurized water, inorganic acidic or basic catalyst, and inorganic/organic corrosive components released during the conversion. Candidate alloys for this application require suitable resistance to both corrosion and stress corrosion cracking (SCC) to withstand the HTL process conditions (250°C•374°C and 4•22 MPa). Ferritic iron-chromium (Fe-Cr) steels are more prone to corrosion but less susceptible to SCC compared to austenitic iron-chromium-nickel (Fe-Cr-Ni) steels. Chromizing can significantly reduce corrosion of Type 409 stainless steel (Fe-11Cr) in a simulated aqueous HTL solution. The objective of this study is to determine the SCC susceptibility of chromized Type 409 stainless steel, relative to the bare (non-chromized) case. The slow strain rate testing (SSRT) technique was used for this purpose. For simplicity of experimentation, SSRT was conducted using simulated HTL water containing 800 ppm potassium chloride (KCl), 1 M potassium carbonate (K2CO3), and 10 wt% acetic acid at ambient temperature and pressure. Complementary potentiodynamic polarization measurements and surface analysis by X-ray photoelectron spectros-copy (XPS) were also made to help interpret the SSRT results. The SSRT results show no significant difference in SCC susceptibility, regardless of the starting surface. Thus, chromizing, while significantly reducing the corrosion of Type 409 stainless steel, does not adversely affect SCC susceptibility, at least under the conditions tested.
Effects of metal surface morphology on deposition behavior of microstickies from papermaking white water, TAPPI Journal July 2023
ABSTRACT: Deposition of small adhesive particles, called microstickies, onto pulp processing equipment and paper machines causes quality and operational problems for recycling mills. The factors that control deposition of microstickies onto surfaces of metal parts remain unclear. In this work, aluminum surfaces with a range of surface roughness were exposed to slurries containing microstickies. The deposition results showed that flat surfaces promote the aggregation and deposition of microstickies particles. Uneven surfaces tended to favor deposition of smaller microstickies, 0.2•1 µm, which may be related to greater contact area presented by the rougher surface. This work provides insights into the deposition of microstickies.
Dissolution of wood components during hot water extraction of spruce, TAPPI Journal May 2023
ABSTRACT: The purpose of this study was to investigate the autohydrolysis of softwood, which is the main chemical operation in both hot water extraction and steam explosion. Control of the process and monitoring its course were ensured by the careful choice of experimental setup and conditions: a milled spruce material was extracted in a small flow-through reactor to minimize degradation of the dissolved material and to enable analysis of the resulting liquors extracted at selected time points. The obtained liquid and solid fractions were analyzed for sugar composition and acetic acid concentration. The results showed that partially degraded hemicelluloses were extracted; hemicelluloses side chains were cleaved off and detected as monomers, while deacetylation was limited. Chain scissions of cellulose were observed as a result of autohydrolysis.