Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 2,121–2,130 of 2,205 results (Duration : 0.014 seconds)
Journal articles
Magazine articles
Open Access
The effect of contact time between CPAM and colloidal silica on the flocculation behavior in the approach flow, TAPPI Journal January 2021

ABSTRACT: Multicomponent wet-end systems have become increasingly common in papermaking, with the objective of improving the retention-formation-dewatering relationship. It is quite common to use at least a cationic polymer, often in combination with an anionic microparticle. In some cases, a fixative is also used. However, there is still debate on the optimal implementation of these systems. In particular, optimizing the contact time of the cationic polymer prior to addition of the anionic microparticle is still poorly understood. In this work, we investigate the effect of the contact time of a cationic polyacrylamide (CPAM) prior to addition of colloidal silica on the flocculation response in a flowing fiber suspension. The effect of using a fixative is also investigated. Focused beam reflectance measurements (FBRM) are combined with zeta-potential measurements for optimizing the addition levels of a two- and three-component system, as well as for elucidating the effect of contact time on CPAM performance. Trials are then performed on a pilot scale flow loop, where the time between addition of these two components is varied and the resulting flocculation response is characterized using high-speed filming and image analysis techniques. It is shown that the efficacy of CPAM can be improved through use of a fixative and that a longer CPAM contact time may be beneficial in terms of immediate flocculation; however, hydrodynamic shear tends to dominate the flocculation response regardless of contact time due to floc rupture.

Journal articles
Magazine articles
Open Access
Kinetics of sulfur dioxide-alcohol-water (SAW) pulping of su

Kinetics of sulfur dioxide-alcohol-water (SAW) pulping of sugarcane straw (SCS), TAPPI JOURNAL June 2017

Journal articles
Magazine articles
Open Access
Rheological characterization of tack and viscoelasticity of compositions of crepe coating used in the Yankee dryer, TAPPI Journal November 2019

ABSTRACT: The vast majority of tissue production uses creping to achieve the required set of properties on the base sheet. The Yankee coating helps to develop the desired crepe that in turn determines properties such as bulk and softness. The adhesion of the sheet to the Yankee surface is a very important characteristic to consider in achieving the desired crepe. The coating mix usually consists of the adhesive, modifier, and release. A good combination of these components is essential to achieving the desired properties of the tissue or towel, which often are determined by trials on the machine that can be time consuming and lead to costly rejects. In this paper, five compo-sitions of an industrial Yankee coating adhesive, modifier, and release were examined rheologically. The weight ratio of the adhesive was kept constant at 30% in all five compositions and the modifier and release ratios were varied. The normal force and work done by the different compositions have been shown at various temperatures simulating that of the Yankee surface, and the oscillatory test was carried out to explain the linear and nonlinear viscoelastic characteristic of the optimal coating composition.

Journal articles
Magazine articles
Open Access
Evaluation of the out-of-plane response of fiber networks with a representative volume element model, TAPPI JOURNAL June 2018

Evaluation of the out-of-plane response of fiber networks with a representative volume element model, TAPPI JOURNAL June 2018

Journal articles
Magazine articles
Open Access
Rheological characteristics of platy kaolin, TAPPI JOURNAL September 2019

ABSTRACT: Platy kaolin can provide significant value in the coating of paper and paperboard. It can be used in multiple applications and can provide benefits such as titanium dioxide (TiO2) extension, smoothness improvement, improved print gloss or ink set rates, calendering intensity reduction, and improved barrier properties. It is not a pigment that can be simply substituted for traditional hydrous kaolin without some adjustment to the coating formulation. These adjustments can be as simple as reducing solids, but may require binder changes as well. The coater setup may need to be adjusted because of the unique rheological behaviors these pigments exhibit.The unique rheological characteristics of platy kaolin are explored here. Measurements of the water retention of platy kaolin containing coatings confirm that water retention is not reduced in comparison to more blocky kaolin pigments, despite the lower coating solids at which they need to be run. This means that the rheological characteristics are the most important in understanding the runnability. An extensive analysis reveals some unique behaviors that need to be understood when utilizing these materials. Viscoelastic measurements indicate that, for this binder system, Tan d is mainly a function of solids. This may explain how weeping is initiated on a blade coater. The degree of shear thinning behaviors is investigated using the Ostwald de-Waele power law. The immobilization point was determined using the Dougherty-Krieger equation and related to the work of Weeks at the University of Maine on blade coater runnability. An indirect measure of particle shape and size synergy is also demonstrated using the Dougherty-Krieger equation parameters.

Journal articles
Magazine articles
Open Access
A model black liquor formulation for use in development and evaluation of membranes for concentrating  weak black liquor, TAPPI Journal February 2022

ABSTRACT: As part of a larger program to develop robust membranes for concentrating weak black liquor prior to the evaporation step, several commercially available membranes were tested for suitability in this application. Given the variation in kraft black liquor for various wood species, the mill-to-mill variations, and the challenges of obtaining fresh samples, the need became apparent for a synthetic reference black liquor that would allow any membrane developer to test a new prototype membrane and compare the results with others. We present a formulation for a model black liquor (MBL) similar to real kraft black liquor in the composition of the major species that can be formulated from readily available reagents. The MBL was tested with two commercial membranes and resulted in similar levels of lignin retention as the real black liquor. It also showed similar viscosity behavior to real black liquor as a function of solids content.

Journal articles
Magazine articles
Open Access
Editorial: TAPPI Standards development: Authors and reviewers are welcome, TAPPI Journal July 2021

ABSTRACT: Readers of TAPPI Journal (TJ) and those involved with R&D and process and product quality will be familiar with TAPPI Standard Test Methods. These test methods are necessary for validating research and ensuring the quality of end products. In addition to test methods, TAPPI also publishes information that isn’t directly related to test methods, such as technical information and definitions, which include specifications, guidelines, and glossaries. All Standards information is developed with the consensus of a technical working group that adheres to set procedures.

Journal articles
Magazine articles
Open Access
Lignin-based resins for kraft paper applications, TAPPI Journal November 2019

ABSTRACT: We investigated miscanthus (MS) and willow (W) lignin-furfural based resins as potential reinforce-ment agents on softwood and hardwood kraft paper. These resins might be sustainable alternatives to the commercial phenolformaldehyde (PF) resins. Phenol is a petrochemical product and formaldehyde has been classified as a carcinogen by the U.S. Environmental Protection Agency. The lignin used in this study was derived from hot water extraction (160ºC, 2 h) of MS and W biomass, and may be considered sulfur-free. These biorefinery lignins were characterized for their chemical composition and inherent properties via wet chemistry and instrumental techniques. The resin blends (MS-resin and W-resin) were characterized for their molecular weight, thermal behavior, and mechanical properties. Mechanical properties were measured by the resin’s ability to reinforce softwood and hard-wood kraft papers. The effect of adding hexamethylenetetramine (HMTA), a curing agent, to the resin was also examined. Mixtures of PF and lignin-based resins were investigated to further explore ways to reduce use of non-renewables, phenol, and carcinogenic formaldehyde. The results show that lignin-based resins have the potential to replace PF resins in kraft paper applications. For softwood paper, the highest strength was achieved using W-resin, without HMTA (2.5 times greater than PF with HMTA). For hardwood paper, MS-resin with HMTA gave the highest strength (2.3 times higher than PF with HMTA). The lignin-based resins, without HMTA, also yielded mechanical properties comparable to PF with HMTA.

Journal articles
Magazine articles
Open Access
Can carbon capture be a new revenue opportunity for the pulp and paper sector?, TAPPI Journal August 2021

ABSTRACT: Transition towards carbon neutrality will require application of negative carbon emission technologies (NETs). This creates a new opportunity for the industry in the near future. The pulp and paper industry already utilizes vast amounts of biomass and produces large amounts of biogenic carbon dioxide. The industry is well poised for the use of bioenergy with carbon capture and storage (BECCS), which is considered as one of the key NETs. If the captured carbon dioxide can be used to manufacture green fuels to replace fossil ones, then this will generate a huge additional market where pulp and paper mills are on the front line. The objective of this study is to evaluate future trends and policies affecting the pulp and paper industry and to describe how a carbon neutral or carbon negative pulp and paper production process can be viable. Such policies include, as examples, price of carbon dioxide allowances or support for green fuel production and BECCS implementation. It is known that profitability differs depending on mill type, performance, energy efficiency, or carbon dioxide intensity. The results give fresh understanding on the potential for investing in negative emission technologies. Carbon capture or green fuel production can be economical with an emission trade system, depending on electricity price, green fuel price, negative emission credit, and a mill’s emission profile. However, feasibility does not seem to evidently correlate with the performance, technical age, or the measured efficiency of the mill.

Journal articles
Magazine articles
Open Access
Modeling and parameter optimization of the papermaking processes by using regression tree model and full factorial design, TAPPI Journal February 2021

ABSTRACT: One of the major challenges in the pulp and paper industry is taking advantage of the large amount of data generated through its processes in order to develop models for optimization purposes, mainly in the papermaking, where the current practice for solving optimization problems is the error-proofing method. First, the multiple linear regression technique is applied to find the variables that affect the output pressure controlling the gap of the paper sheet between the rod sizer and spooner sections, which is the main cause of paper breaks. As a measure to determine the predictive capacity of the adjusted model, the coefficient of determination (R2) and s values for the output pressure were considered, while the variance inflation factor was used to identify and eliminate the collinearity problem. Considering the same amount of data available by using machine learning, the regression tree was the best model based on the root mean square error (RSME) and R2. To find the optimal operating conditions using the regression tree model as source of output pressure measurement, a full factorial design was developed. Using an alpha level of 5%, findings show that linear regression and the regression tree model found only four independent variables as significant; thus, the regression tree model demonstrated a clear advantage over the linear regression model alone by improving operating conditions and demonstrating less variability in output pressure. Furthermore, in the present work, it was demonstrated that the adjusted models with good predictive capacity can be used to design noninvasive experiments and obtain.