Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 211–220 of 302 results (Duration : 0.013 seconds)
Journal articles
Magazine articles
Open Access
Soybean peroxidase treatment of ultra-high kappa softwood pulp to enhance yield and physical properties, TAPPI Journal September 2020

ABSTRACT: The working hypothesis serving as basis for this study is that pulping to a higher kappa number will produce a higher yield pulp, and then treating that pulp with a surface reactive lignin peroxidase to ablate surface lignin will increase specific bonding area. In the present case, the working hypothesis was modified so that soybean peroxidase (SBP) works like lignin peroxidase to modify surface lignin on high-kappa, high-yield softwood pulps to facilitate enhanced fiber-to-fiber bonding such that the resulting paper strength is similar to the lower kappa soft-wood pulp generally used to make linerboard. Soybean peroxidase is actually a plant peroxidase that exhibits lignin peroxidase-like activity. It is not a lignin peroxidase derived from white rot fungus. The current work did show a significant improvement in pulp yield (62.2% vs. 55.2% yield for a 103-kappa control linerboard grade sheet), while treatment with SBP showed that tensile, burst, and STFI properties of the pulp were improved, although more convincing data needs to be obtained.

Journal articles
Magazine articles
Open Access
Dissolution of wood components during hot water extraction of spruce, TAPPI Journal May 2023

ABSTRACT: The purpose of this study was to investigate the autohydrolysis of softwood, which is the main chemical operation in both hot water extraction and steam explosion. Control of the process and monitoring its course were ensured by the careful choice of experimental setup and conditions: a milled spruce material was extracted in a small flow-through reactor to minimize degradation of the dissolved material and to enable analysis of the resulting liquors extracted at selected time points. The obtained liquid and solid fractions were analyzed for sugar composition and acetic acid concentration. The results showed that partially degraded hemicelluloses were extracted; hemicelluloses side chains were cleaved off and detected as monomers, while deacetylation was limited. Chain scissions of cellulose were observed as a result of autohydrolysis.

Journal articles
Magazine articles
Open Access
Wheat straw as an alternative pulp fiber, TAPPI Journal December 2024

Author: Peter W. Hart | TAPPI J. 19(1): 41(2020) - ABSTRACT: The desire to market sustainable packaging materials has led to an interest in the use of various fiber types as a raw material. It has been suggested that the use of annual crops for partial replacement of wood fiber would result in more sustainable products. Several life cycle analyses (LCA) have been performed to evaluate these claims. These LCAs provided conflicting and contradictory results because of the local conditions and the specific pulping processes investigated. Selected LCAs are reviewed and the underlying reasons for these conflicting results are analyzed.

Journal articles
Magazine articles
Open Access
Fate of phosphorus in the recovery cycle of the kraft pulping process, TAPPI Journal March 2020

ABSTRACT: The accumulation of nonprocess elements in the recovery cycle is a common problem for kraft pulp mills trying to reduce their water closure or to utilize biofuels in their lime kiln. Nonprocess elements such as magnesium (Mg), manganese (Mn), silicon (Si), aluminum (Al), and phosphorus (P) enter the recovery cycle via wood, make-up chemicals, lime rock, biofuels, and process water. The main purge point for these elements is green liquor dregs and lime mud. If not purged, these elements can cause operational problems for the mill. Phosphorus reacts with calcium oxide (CaO) in the lime during slaking; as a result, part of the lime is unavailable for slaking reactions. The first part of this project, through laboratory work, identified rhenanite (NaCa(PO4)) as the form of P in the lime cycle and showed the negative effect of P on the availability of the lime. The second part of this project involved field studies and performing a mass balance for P at a Canadian kraft pulp mill.

Journal articles
Magazine articles
Open Access
Synthesis of filtrate reducer from biogas residue and its application in drilling fluid, TAPPI Journal March 2020

ABSTRACT: Biogas residues (BR) containing cellulose and lignin are produced with the rapid development of biogas engineering. BR can be used to prepare the filtrate reducer of water-based drilling fluid in oilfields by chemical modification. BR from anaerobically fermenting grain stillage was alkalized and etherified by caustic soda and chloroacetic acid to prepare filtrate reducer, which was named as FBR. The long-chain crystalline polysaccharides were selected as dispersing agents (DA), and the water-soluble silicate was used as the cross-linking agent. After the hot rolling of FBR in saturated saltwater base mud for 16 h at 120°C, the filtration loss was increased from 7.20 mL/30 min before aging to 8.80 mL/30 min after aging. Compared with the commercial filtrate reducers, FBR had better tolerance to high temperature and salt, and lower cost.

Journal articles
Magazine articles
Open Access
Exergy and sensibility analysis of each individual effect in a kraft multiple effect evaporator, TAPPI Journal October 2019

ABSTRACT: The multiple effect evaporator (MEE) is an energy intensive step in the kraft pulping process. The exergetic analysis can be useful for locating irreversibilities in the process and pointing out which equipment is less efficient, and it could also be the object of optimization studies. In the present work, each evaporator of a real kraft system has been individually described using mass balance and thermodynamics principles (the first and the second laws). Real data from a kraft MEE were collected from a Brazilian plant and were used for the estimation of heat transfer coefficients in a nonlinear optimization problem, as well as for the validation of the model. An exergetic analysis was made for each effect individually, which resulted in effects 1A and 1B being the least efficient, and therefore having the greatest potential for improvement. A sensibility analysis was also performed, showing that steam temperature and liquor input flow rate are sensible parameters.

Journal articles
Magazine articles
Open Access
Lignin carbohydrate complex studies during kraft pulping for producing paper grade pulp from birch, TAPPI Journal September 2020

ABSTRACT: Paper grade pulp production across the globe is dominated by the kraft process using different lignocellulosic raw materials. Delignification is achieved around 90% using different chemical treatments. A bottleneck for complete delignification is the presence of residual covalent bonds that prevail between lignin and carbohydrate even after severe chemical pulping and oxygen delignification steps. Different covalent bonds are present in native wood that sustain drastic pulping conditions. In this study, 100% birch wood was used for producing paper grade pulp, and the lignin carbohydrate bonds were analyzed at different stages of the kraft cook. The lignin carbohydrate bonds that were responsible for residual lignin retention in unbleached pulp were compared and analyzed with the original lignin-carbohydrate complex (LCC) bonds in native birch wood. It was shown that lignin remaining after pulping and oxygen delignification was mainly bound to xylan, whereas the lignin bound to glucomannan was for the most part degraded.

Journal articles
Magazine articles
Open Access
Co-pulping of Trewia nudiflora and Trema orientalis, TAPPI Journal June 2023

ABSTRACT: Trewia nudiflora, a fast-growing species, was evaluated as a pulpwood. The a-cellulose content of this species was 40.4% with a Klason lignin of 21.5%. It was characterized by shorter fibers with a thin cell wall. The pulp yield was 40% with a kappa number of 16 at the conditions of 18% active alkali charge and 30% sulfidity for 2 h cooking at 170°C. T. nudiflora was similar to Trema orientalis in anatomical, morphological, and chemical composition; therefore, mixed chips at a 50:50 mixture ratio were cooked under optimum conditions. The pulp yield of mixed chip cooking was 45.4% with a kappa number of 19.4. The tensile and tear index of T. nudiflora pulps were 64.8 Nœm/g and 11.5 kPaœm2/g at 35 °SR, respectively. The mixed chips, T. nudiflora, and T. orientalis pulps showed above 81% brightness when bleached by D0(EP)D1 sequence using 20 kg chlorine dioxide (ClO2)/ton of pulp.

Journal articles
Magazine articles
Open Access
Optimizing OCC refining with defloccing, TAPPI Journal April 2025

ABSTRACT: Subjecting pulp to a high shear zone immediately after refining results in more efficient refining. This phenomenon was originally observed to benefit softwood pulp refining. It was attributed to floc reduction based on floc measurements in mill refiners and the observation of reduced headbox plugging. Hence, this phenomenon has been termed “defloccing.” The present work shows this technology also benefits refining of North American old corrugated containers (OCC). The combined results of several mill trials with OCC defloccing demonstrate the interactions between OCC refining intensity, defloccing technology, and other state-of-the-art refining improvements. At the same refining intensity, defloccing OCC on 100% recycled machines increases OCC refining efficiency by 15%, with greater efficiency improvement on machines that use softwood as well as OCC. Furthermore, it is shown that the benefits of defloccing are additive to refining improvements made in the refining zone of a refiner plate. Most OCC refiner plate designs can therefore benefit from the addition of a defloccing feature.

Journal articles
Magazine articles
Open Access
A feasibility study of using the organic Rankine cycle for power generation from the flue gases of recovery boilers, TAPPI Journal August 2022

ABSTRACT: Almost 415 tons/h of flue gases with a temperature of 160°C are released to the atmosphere from the recovery boiler of a pulp mill with capacity of 1000 air dried (a.d.) metric tons of pulp per day. This is a large waste heat stream that can be used to generate power, to decrease the operating costs of a pulp mill, and to save carbon dioxide (CO2) emissions. In this work, the feasibility of using an organic Rankine cycle (ORC) with ammonia as the working fluid to generate power from the flue gases of recovery boilers is studied. CHEMCAD and Taguchi methods are used for simulation of the process and for optimization of operating conditions, respectively. The temperature of the ammonia and flue gases at the exit of evaporator, exit pressure of the pump and turbine, and the degree of subcooling of ammonia at the exit of the condenser are five operating parameters that are manipulated to optimize the process. Three different scenarios are defined: minimizing the net power cost, maximizing the ORC efficiency, and maximizing the net profit. Different aspects of these scenarios, such as net power generation, cost, efficiency, and CO2 emission savings are discussed, and optimum operating conditions are reported.