Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Application of spruce wood flour as a cellulosic-based wood additive for recycled paper applications— A pilot paper machine study, TAPPI Journal October 2021
ABSTRACT: This study gives a first insight into the use of wood flour as a plant-based and cellulosic-based alternative additive for newsprint and paperboard production using 100% recycled fibers as a raw material. The study compares four varieties of a spruce wood flour product serving as cellulosic-based additives at addition rates of 2%, 4%, and 6% during operation of a 12-in. laboratory pilot paper machine. Strength properties of the produced news-print and linerboard products were analyzed. Results suggested that spruce wood flour as a cellulosic-based additive represents a promising approach for improving physical properties of paper and linerboard products made from 100% recycled fiber content. This study shows that wood flour pretreated with a plant-based polysaccharide and untreated spruce wood flour product with a particle size range of 20 µm to 40 µm and 40 µm to 70 µm can increase the bulk and tensile properties in newsprint and linerboard applications.
Journal articles
Magazine articles
SetPoint: Powerful Influences, Paper360º January/February 2020
SetPoint: Powerful Influences, Paper360º January/February 2020
Journal articles
Magazine articles
Green Bay Packaging Keeps Safety in the Family, Paper360º January/February 2020
Green Bay Packaging Keeps Safety in the Family, Paper360º January/February 2020
Journal articles
Magazine articles
Fundamental understanding of removal of liquid thin film trapped between fibers in the paper drying process: A microscopic approach, TAPPI Journal May 2020
ABSTRACT: In the fabrication of paper, a slurry with cellulose fibers and other matter is drained, pressed, and dried. The latter step requires considerable energy consumption. In the structure of wet paper, there are two different types of water: free water and bound water. Free water can be removed most effectively. However, removing bound water consumes a large portion of energy during the process. The focus of this paper is on the intermediate stage of the drying process, from free water toward bound water where the remaining free water is present on the surfaces of the fibers in the form of a liquid film. For simplicity, the drying process considered in this study corresponds to pure convective drying through the paper sheet. The physics of removing a thin liquid film trapped between fibers in the paper drying process is explored. The film is assumed to be incompressible, viscous, and subject to evaporation, thermocapillarity, and surface tension. By using a volume of fluid (VOF) model, the effect of the previously mentioned parameters on drying behavior of the thin film is investigated.
Journal articles
Magazine articles
Editorial: The next phase of research in academia and industry, TAPPI Journal September 2023
ABSTRACT: The pulp, paper, and textile sectors have contrib-uted to lifestyle improvements for people with the development and commercialization of products like toilet tissue, facial wipes, diapers, and feminine hygiene products, to name a few. Research and development (R&D) efforts in these sectors are critical now more than ever due to the need for healthcare and lifesaving products, as became evident with the COVID-19 pandemic. Additionally, the need to meet net-zero carbon goals and the necessity to revive manufacturing in devel-oped economies clearly emphasize the requirement to ex-amine the R&D landscape. Academia, industry, and governments have respective roles to play in this field.
Journal articles
Magazine articles
Characterization of the redispersibility of cellulose nanocrystals by particle size analysis using dynamic light scattering, TAPPI Journal April 2019
ABSTRACT: Cellulose nanocrystals (CNCs), which are derived from the most abundant and inexhaustible natural polymer, cellulose, have received significant interest owing to their mechanical, optical, chemical, and rheological properties. In order to transport CNC products conveniently and efficiently, they are ideally dried and stored as pow-ders using freeze-drying or spray-drying technologies. The redispersibility of CNC powders is quite important for their end use; hence, a convenient method is required to characterize the redispersibility of CNC powders. In this paper, the possibility of characterizing the redispersibility of CNC powders by particle size analysis using dynamic light scattering (DLS) was investigated by comparing the results from transmission electron microscopy (TEM) and DLS. The particle size obtained with DLS approximately matched that obtained with TEM. Compared with TEM, DLS is a quick and convenient method to measure the particle size distribution of CNCs in water. Two kinds of dispersing methods, sonication and high-speed shearing, and two kinds of CNCs prepared by different methods, sulfuric acid hydrolysis and the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) oxidization method, were used to study the redis-persibility of CNCs. Sonication was more efficient than the high-speed shearing method for nanoscale dispersion of CNC powders in water. CNCs prepared by sulfuric acid hydrolysis could be more easily redispersed in water than those prepared by TEMPO oxidation.
Journal articles
Magazine articles
Priorities for development of standard test methods to support the commercialization of cellulose nanomaterials, TAPPI Journal April 2019
ABSTRACT: With the growing number of producers and users of cellulose nanomaterials (CNMs), there is an increasing need to develop standard test methods to control production and quality of CNMs. In 2014, a Task Group was formed within the ISO Technical Committee 6 Paper, board and pulps to begin addressing the need for standards. This Task Group, TG 1, was tasked with reviewing existing standards and identifying the need for additional standards to characterize CNMs.In March 2018, TG 1 launched a survey to ask CNM producers around the world about the importance of having standard procedures to measure and quantify a variety of CNM properties, both physical and chemical. Producers were asked to identify the type(s) of CNM they produced and their scale of production, and to rank the properties for which they felt standard test methods were most important. In this paper, we summarize the survey responses and identify those properties of highest interest for producers of both cellulose nanocrystals (CNCs) and cellulose nano- and microfibril-based materials (CNFs/CMFs). Properties of importance can be divided into three broad groups: i) a standard has either been developed or is under develop-ment, ii) a currently used standard could be adapted for use with CNMs, or iii) no standard is currently available and further R&D and consultation with industry is needed before a suitable and well-validated standard can be developed. The paper also examines the challenges of developing new standard methods for some of the key properties—as well as the feasibility and limitations of adapting exiting standards—to CNMs.
Journal articles
Magazine articles
Fundamental molecular characterization and comparison of the O, D0, and E stage effluents from hardwood pulp bleaching, TAPPI Journal 2019
ABSTRACT: The present study characterized effluents from the O, D0, and E stages using nuclear magnetic reso-nance (NMR) and gel permeation chromatography (GPC) techniques to better understand the chemical nature of the dissolved organics formed from the bleaching of a high-yield hardwood kraft pulp. Understanding the structures and molecular weight distribution of these organics is the first step in developing methods to mitigate these contam-inates in the discharged effluents. The results indicated that the molecular weight distribution (MWD) of the dis-solved organics from oxygen delignification effluent is broader than those from D0 and E stage effluents. In addition, the O stage filtrate contained considerable amounts of lignin and xylan fragments, which showed its efficiency in removing such materials. The effluent from the D0 stage contained a lower amount of high molecular weight frag-ments and a higher amount of low molecular weight fragments versus the O-stage filtrate. Aromatic structures were nearly absent in the D0 stage filtrate, but the degraded organic material, presumably from oxidized lignin, contained olefinic (C=C) and carbonyl (C=O) functional groups. Furthermore, higher molecular weight fragments were detected in the E-stage effluent, presumably due to the extensive solubilization and removal of the oxidized lignin generated from the D0 pulp.
Journal articles
Magazine articles
Wet-end addition of nanofibrillated cellulose pretreated with cationic starch to achieve paper strength with less refining and higher bulk, TAPPI JOURNAL July 2018
Wet-end addition of nanofibrillated cellulose pretreated with cationic starch to achieve paper strength with less refining and higher bulk, TAPPI JOURNAL July 2018
Journal articles
Magazine articles
Use of fines-enriched chemical pulp to increase CTMP strength, TAPPI Journal April 2021
ABSTRACT: In this study, fines-enriched pulp (FE-pulp)—the fine fraction of highly-refined kraft pulp—was benchmarked against highly-refined kraft pulp (HRK-pulp) as a strength agent in eucalyptus chemithermomechanical pulp (CTMP). Both the FE-pulp and the HRK-pulp were produced from unbleached softwood kraft pulp, and equal amounts of those strength agents were added to the original CTMP, as well as to washed CTMP, where most of the fines had been removed. The effects of the added strength agents were evaluated with laboratory handsheets.The FE-pulp proved to be twice as effective as HRK-pulp. Both HRK-pulp and FE-pulp increased the strength of the CTMP handsheets. The bulk of the handsheets decreased, however, as well as the drainability. The addition of 5% FE-pulp resulted in the same strength increase as an addition of 10% HRK-pulp, as well as the same decrease in bulk and CSF. For the handsheets of washed CTMP, the strengths were not measurable; the CTMP lost the sheet strength when the CTMP-fines content was reduced through washing. The reduced strength properties were compensated for by the addition of chemical pulp fines that proved to be an efficient strength agent. The addition of 5% FE-pulp restored the strength values, and at a higher bulk and higher drainability.