Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Root cause analysis of cationic polymer additive efficiency decline in virgin and recycle containerboard mills, TAPPI Journal January 2020
ABSTRACT: It is well known that retention, drainage and strength polymers struggle to perform (if at all) in virgin containerboard mills. In-depth studies have been undertaken in this area for more than seven years, investigating the issue from all directions. A key finding of this work is that soluble lignin is detrimental to chemical efficiency. A strong correlation exists between decreased chemical efficiency and high soluble lignin. Both recycled systems and virgin systems have been studied, and this correlation holds true regardless of furnish. The primary area of concern is virgin container-board, because these mills tend to have the highest lignin levels. Some highly closed recycled mills can also build elevated lignin levels that can negatively affect chemical efficiency.
Journal articles
Magazine articles
Orifice geometry as a tool for evaluating extensional flow resistance of barrier coating colors, TAPPI Journal November 2024
ABSTRACT: Knowledge of extensional flow behavior of coating colors can be beneficial for improving runnability and eliminating defects in various coating processes. The current work evaluates the use of an orifice geometry attached to a commercial capillary viscometer as a tool to obtain extensional flow properties of barrier coating dispersions. By measuring the pressure drop across the orifice as a function of flow velocity, the method presents the flow resistance as Euler number at industrially relevant high deformation rates. The results agree with the earlier results obtained with a capillary entrance pressure loss technique. The type of polymer additive is shown to control the extensional flow resistance, with high molecular weight linear flexible polymers such as polyethylene oxide (PEO) and polyvinyl alcohol (PVOH) having highest impact. The orifice method offers advantages over other approaches, including the need for only a small sample amount, ease of measurement, and access to high deformation rates.
Journal articles
Magazine articles
Characterizing rheological behavior and fluidization of highly refined furnishes, TAPPI Journal April 2024
ABSTRACT: In this work, highly refined softwood bleached kraft pulp (SWBKP) furnishes, referred to here as XFC, were studied from the perspective of fiber suspension handling in processing. The rheology of the furnishes was studied with a rotational rheometer using a non-standard flow geometry to understand the viscosity development at different consistencies and the impact of temperature. For fluidization analysis during pipe flow, two optical methods were implemented; namely, optical coherence tomography (OCT) and high-speed video (HSV) imaging. The OCT was used to determine the small-scale floc structures near the pipe wall where the shear stress is highest, and the HSV imaging was applied for observing flow instabilities and XFC suspension uniformity at the pipe scale. All these issues can be significant in deciding the minimum flow rate required for a process pipe to get sufficient fluidization of XFC suspensions.
Journal articles
Magazine articles
Effects of agitator blade scaling on mixing in dissolving tanks, TAPPI Journal April 2022
ABSTRACT: Hard calcium carbonate scale often forms on the agitators in smelt dissolving tanks. The effects of this scale on mixing are not well understood. While mixing in tanks has often been modeled in the literature, there have been no studies involving agitator scaling. To better understand the impact of agitator scaling on hydrodynamics and tank concentrations, a steady state, three-dimensional (3D) model has been developed for a smelt dissolving tank at a kraft pulp mill. In this work, four cases are compared: an agitator with no scaling, mild scaling, moderate scaling, and extreme scaling. The extreme scaling case is representative of scale buildup on a dissolving tank agitator that was significant enough that the agitator had to be stopped and cleaned. The reduction in the agitator fluid jet velocity is relatively small for the mild and moderate scaling cases, but it becomes more significant for the extreme scaling case, for which the results indicate that the mixing of the smelt with the weak wash is likely poor and that there would thus be a risk of smelt pooling.
Journal articles
Magazine articles
Utilization of kraft pulp mill residuals, TAPPI Journal February 2022
ABSTRACT: Kraft pulp mills produce on average about 100 kg of solid residuals per metric ton of pulp produced. The main types of mill waste are sludge from wastewater treatment plants, ash from hog fuel boilers, dregs, grits, and lime mud from causticizing plants and lime dust from lime kilns. Of these, about half is disposed of in landfills, which highlights the need and potential for waste recycling and utilization. Sludge is either incinerated in hog fuel boilers to generate steam and power or used in various forms of land application, including land spreading, composting, or as an additive for landfill or mine waste covers. The majority of hog fuel boiler ash and causticizing plant residues is landfilled. Alkaline residuals can be conditioned for use in land application, manufacture of construction materials, and production of aggregates for road work. This technical review summarizes residuals utilization methods that have been applied in pulp and paper mills at demonstration- or full-scale, and therefore may act as a guide for mill managers and operators whose goal is to diminish the costs and the environmental impact of waste management.
Journal articles
Magazine articles
Probing the molecular weights of sweetgum and pine kraft lignin fractions, TAPPI Journal June 2021
ABSTRACT: The present investigation undertook a systematic investigation of the molecular weight (MW) of kraft lignins throughout the pulping process to establish a correlation between MW and lignin recovery at different extents of the kraft pulping process. The evaluation of MW is crucial for lignin characterization and utilization, since it is known to influence the kinetics of lignin reactivity and its resultant physico-chemical properties. Sweetgum and pine lignins precipitated from black liquor at different pHs (9.5 and 2.5) and different extents of kraft pulping (30–150 min) were the subject of this effort. Gel permeation chromatography (GPC) was used to determine the number average molecular weight (Mn), mass average molecular weight (Mw), and polydispersity of the lignin samples. It was shown that the MW of lignins from both feedstocks follow gel degradation theory; that is, at the onset of the kraft pulping process low molecular weight-lignins were obtained, and as pulping progressed, the molecular weight peaked and subsequently decreased. An important finding was that acetobromination was shown to be a more effective derivatization technique for carbohydrates containing lignins than acetylation, the technique typically used for derivatization of lignin.
Journal articles
Magazine articles
Multiple recycling of paperboard: Paperboard characteristics and maximum number of recycling cycles— Part I: Multiple recycling of corrugated base paper, TAPPI Journal November 2019
ABSTRACT: Paper for recycling is an important fiber source for the production of corrugated base paper. The change in production capacity toward more and more packaging papers affects the composition of paper for recy-cling and influences the paper quality. This research project investigated the influence of the multiple recycling of five different corrugated base papers (kraftliner, neutral sulfite semichemical [NSSC] fluting, corrugating medium, testliner 2, and testliner 3) on suspen-sion and strength properties under laboratory conditions. The corrugated board base papers were repulped in a low consistency pulper and processed into Rapid-Köthen laboratory sheets. The sheets were then recycled up to 15 times in the same process. In each cycle, the suspension and the paper properties were recorded. In particular, the focus was on corrugated board-specific parameters, such as short-span compression test, ring crush test, corrugat-ing medium test, and burst. The study results indicate how multiple recycling under laboratory conditions affects fiber and paper properties.
Journal articles
Magazine articles
Discrete element method to predict coating failure mechanisms, TAPPI JOURNAL January 2018
Discrete element method to predict coating failure mechanisms, TAPPI JOURNAL January 2018
Journal articles
Magazine articles
Quantification of vegetable oil in recycled paper, TAPPI JOURNAL September 2020
ABSTRACT: Vegetable soybean oil is commonly used in cooking foods that are packaged in takeaway paper-board containers. Vegetable oil is hydrophobic, and in sufficiently high concentration, could interfere with interfiber bonding and result in paper strength loss. In order to quantify the effect of oil on the resulting paperboard strength, it is necessary to quantify the oil content in paper. A lab method was evaluated to determine the soybean oil content in paper. Handsheets were made with pulps previously treated with different proportions of vegetable oil. Pyrolysis gas chromatography-mass spectrometry (pyGCMS) was used to quantify the amount of oil left in the handsheets. The results revealed a strong correlation between the amount of oil applied to the initial pulp and the amount of oil left in the handsheets.In addition, the effect of vegetable oils on paper strength may be affected by the cooking process. Vegetable oil is known to degrade over time in the presence of oxygen, light, and temperature. The vegetable oil was put in an oven to imitate the oil lifecycle during a typical pizza cooking process. The cooked oil was then left at room temperature and not protected from air (oxygen) or from normal daylight. The heated, then cooled, oil was stored over a period of 13 weeks. During this time, samples of the aged oil were tested as part of a time-based degradation study of the cooked and cooled oil.
Journal articles
Magazine articles
Recycling performance of softwood and hardwood unbleached kraft pulps for packaging papers, TAPPI Journal February 2023
ABSTRACT: The scope of this work is to evaluate the recyclability potential of hardwood and softwood unbleached kraft pulps, leading to a sound basis for comparison and even to support a decision about fibers accord-ing to the performance achieved. The influence of successive recycling cycles (up to 10 cycles) on the fiber morphol-ogy, pulp suspension drainability, water retention capacity, and handsheet mechanical properties were studied for Eucalyptus globulus and Pinus sylvestris unbleached kraft pulps. The performance of these pulps as linerboard and corrugating medium for packaging was also evaluated. The requirements for brown kraftliner and for high perfor-mance recycled fluting grades is preserved for E. globulus pulp during all 10 recycling cycles, evidenced by the mod-erate decrease of burst index and crush resistance index and by the short-span compression index, whereas the P. sylvestris pulp loses this rating after the second cycle. These results strongly support the higher performance of E. globulus pulp for recycling as compared with softwood kraft pulp from the perspective of packaging papers.