Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 2,441–2,450 of 2,480 results (Duration : 0.014 seconds)
Journal articles
Magazine articles
Open Access
A true green cover for industrial waste landfills, TAPPI Journal April 2024

ABSTRACT: Greenhouse gas (GHG) emissions in the United States totaled 5,981 million metric tons of carbon dioxide equivalent (MMT CO2eq) in 2020. Of that, GHG emissions by the pulp and paper sector amounted to 35 MMT CO2eq direct emissions and those by industrial waste landfills summed to 7.4 MMT CO2eq direct emissions. Loss of GHG sinks due to change in land use further contributes to the net GHG emissions. Industrial waste landfills are typically required to comply with certain federal and state regulations, including meeting requirements for final cover systems. Conventional final cover systems have included use of soil covers and/or soil-geosynthetic composite covers. An engineered turf cover provides for an excellent “green” alternative final cover system for industrial waste landfills.This paper discusses various sustainability aspects pertaining to use of an engineered turf final cover, including: (i)significantly low carbon footprint associated with the construction of an engineered turf alternative final coverwhen compared to closure using a traditional or prescriptive cover system; (ii) saving valuable soil and land resourc-es; (iii) saving water resources by reduction in its use during and after construction; (iv) reducing impacts associated with borrow areas; and (v) reducing overall carbon footprint. Further, when using an engineered turf cover, opportunities exist for beneficial reuse of land, including development of solar energy. A brief discussion on the potential fordevelopment of solar energy is included.

Journal articles
Magazine articles
Open Access
Pulp and paper mills: The original biorefineries — past performance and limitations to future opportunities, TAPPI Journal October 2023

ABSTRACT: Pulp mills have been biorefineries since the invention of the Tomlinson recovery boiler. Unfortunately, the paper industry has done a poor job explaining that concept to the general public. A number of bioproducts in everyday use have been produced by pulp mills for several decades, and new products are routinely being developed. Modern research efforts over the last couple of decades have focused on producing even more products from pulp and paper mills through capacity enhancement and the development of value-added products and liquid transportation fuels to enhance paper mill profitability. Some of these efforts, often referred to as modern biorefineries, have focused so heavily on product development that they have ignored operating and process realities that limit the transformation of pulp and paper mills from the current limited number of bioproducts produced today to economic scale production of these value-added products. In this paper, several of these limitations are addressed. In addition, there are several supply chain, marketing, product quality, and economic realities limiting the value potential for these wholesale conversions of pulp mills into multiproduct modern biorefineries. Finally, the conservative nature and capital intensity of the pulp and paper industries provide a difficult hurdle for conversion to the modern biorefinery concept. These issues are also reviewed.

Journal articles
Magazine articles
Open Access
Influence of tensile straining and fibril angle on the stiffness and strength of previously dried kraft pulp fibers, TAPPI JOURNAL July 2018

Influence of tensile straining and fibril angle on the stiffness and strength of previously dried kraft pulp fibers, TAPPI JOURNAL July 2018

Journal articles
Magazine articles
Open Access
Kraft recovery boiler operation with splash plate and/or beer can nozzles — a case study, TAPPI Journal Octobr 2021

ABSTRACT: In this work, we study a boiler experiencing upper furnace plugging and availability issues. To improve the situation and increase boiler availability, the liquor spray system was tuned/modified by testing different combinations of splash plate and beer can nozzles. While beer cans are typically used in smaller furnaces, in this work, we considered a furnace with a large floor area for the study. The tested cases included: 1) all splash plate nozzles (original operation), 2) all beer can nozzles, and 3) splash plate nozzles on front and back wall and beer cans nozzles on side walls. We found that operating according to Case 3 resulted in improved overall boiler operation as compared to the original condition of using splash plates only. Additionally, we carried out computational fluid dynamics (CFD) modeling of the three liquor spray cases to better understand the furnace behavior in detail for the tested cases. Model predictions show details of furnace combus-tion characteristics such as temperature, turbulence, gas flow pattern, carryover, and char bed behavior. Simulation using only the beer can nozzles resulted in a clear reduction of carryover. However, at the same time, the predicted lower furnace temperatures close to the char bed were in some locations very low, indicating unstable bed burning. Compared to the first two cases, the model predictions using a mixed setup of splash plate and beer can nozzles showed lower carryover, but without the excessive lowering of gas temperatures close to the char bed.

Journal articles
Magazine articles
CFD and predictive modeling of temperature and calcination in a rotary lime kiln • Potential for steadier kiln operation, TAPPI Journal October 2024

ABSTRACT: Rotary lime kilns are used in the pulp and paper industry to calcine lime mud to lime. Lime kiln models provide a means to understand the complex phenomena occurring within the kiln to aid in problem-solving during operation. A two-dimensional (2D) computational fluid dynamics (CFD) and one-dimensional (1D) bed model was previously developed for steady-state and transient analysis. This study explores data extracted from the model over a longer time period. The simulated outlet gas and shell temperature are compared to measured data for validation. The capability of using the model to estimate the production rate, accounting for the residence time within the kiln, is discussed. The maximum refractory wall temperature is analyzed during operation. Fluctuations in the calcination location are compared to outer shell heat-map data to correlate the calcination location and ring formation and growth. The model results to date indicate that fluctuations in the calcination zone may contribute to problematic ring growth, though a direct correlation has yet to be established. Additionally, a method for steadier kiln control is introduced and discussed. A machine learning model is also developed to predict the calcination start location from industrial data and is compared to the CFD model for validation. This model can generate results quickly and without the need for knowledge in CFD software and theory. Good agreement is found between the CFD and machine learning model during operation, with a mean absolute error (MAE) of 0.46 m, a mean absolute percentage error (MAPE) of 0.92%, and a root mean square error (RMSE) of 1.17 m.

Journal articles
Open Access
Materials performance considerations in hydrothermal liquefaction conversion of biomass, TAPPI Journal June 2025

ABSTRACT: Hydrothermal liquefaction (HTL) is a promising thermochemical route developed to convert woody biomass and biowaste to biochemicals and bio-oils. However, the operating conditions are rather harsh to biorefinery structural metallic components. These conditions include alkaline catalysts such as potassium carbonate (K2CO3); hot, pressurized (sub-critical) water reaction; and medium and aggressive anions chlorine (Cl•) and hydrogen sulfide (H•) released from biomass feedstocks. Thus, selection of suitable structural alloys for biorefinery components involves striking a balance between mechanical properties, corrosion resistance, and cost. Alloys currently being considered for this application include ferritic-martensitic steels and austenitic stainless steels. From a corrosion perspective in hot pressurized water, the former typically exhibits higher stress corrosion cracking resistance, whereas the latter exhibits higher corrosion resistance. This study reviews cost-effective corrosion control strategies aimed at increasing the chromium (Cr) content for protective surface oxide formation, as screened by testing in simulated HTL alkaline water, to support materials selection and design. Corrosion control strategies include surface modification (increasing surface Cr content), alloying (increasing bulk Cr content), and stainless-steel type (ferritic vs. austenitic). Of the alloys considered (including those subjected to surface modification), ferritic stainless steels exhibit a promising balance between corrosion and stress corrosion cracking resistance, adding another family of candidate alloys for structural biorefinery component materials selection and design.

Journal articles
Magazine articles
Open Access
Editorial: TAPPI Standards development: Authors and reviewers are welcome, TAPPI Journal July 2021

ABSTRACT: Readers of TAPPI Journal (TJ) and those involved with R&D and process and product quality will be familiar with TAPPI Standard Test Methods. These test methods are necessary for validating research and ensuring the quality of end products. In addition to test methods, TAPPI also publishes information that isn’t directly related to test methods, such as technical information and definitions, which include specifications, guidelines, and glossaries. All Standards information is developed with the consensus of a technical working group that adheres to set procedures.

Journal articles
Magazine articles
Open Access
Lignin-based resins for kraft paper applications, TAPPI Journal November 2019

ABSTRACT: We investigated miscanthus (MS) and willow (W) lignin-furfural based resins as potential reinforce-ment agents on softwood and hardwood kraft paper. These resins might be sustainable alternatives to the commercial phenolformaldehyde (PF) resins. Phenol is a petrochemical product and formaldehyde has been classified as a carcinogen by the U.S. Environmental Protection Agency. The lignin used in this study was derived from hot water extraction (160ºC, 2 h) of MS and W biomass, and may be considered sulfur-free. These biorefinery lignins were characterized for their chemical composition and inherent properties via wet chemistry and instrumental techniques. The resin blends (MS-resin and W-resin) were characterized for their molecular weight, thermal behavior, and mechanical properties. Mechanical properties were measured by the resin’s ability to reinforce softwood and hard-wood kraft papers. The effect of adding hexamethylenetetramine (HMTA), a curing agent, to the resin was also examined. Mixtures of PF and lignin-based resins were investigated to further explore ways to reduce use of non-renewables, phenol, and carcinogenic formaldehyde. The results show that lignin-based resins have the potential to replace PF resins in kraft paper applications. For softwood paper, the highest strength was achieved using W-resin, without HMTA (2.5 times greater than PF with HMTA). For hardwood paper, MS-resin with HMTA gave the highest strength (2.3 times higher than PF with HMTA). The lignin-based resins, without HMTA, also yielded mechanical properties comparable to PF with HMTA.

Journal articles
Magazine articles
Open Access
Using multistage models to evaluate how pulp washing after the first extraction stage impacts elemental chlorine-free bleach demand, TAPPI Journal November 2018

Using multistage models to evaluate how pulp washing after the first extraction stage impacts elemental chlorine-free bleach demand, TAPPI Journal November 2018

Journal articles
Magazine articles
Open Access
Can carbon capture be a new revenue opportunity for the pulp and paper sector?, TAPPI Journal August 2021

ABSTRACT: Transition towards carbon neutrality will require application of negative carbon emission technologies (NETs). This creates a new opportunity for the industry in the near future. The pulp and paper industry already utilizes vast amounts of biomass and produces large amounts of biogenic carbon dioxide. The industry is well poised for the use of bioenergy with carbon capture and storage (BECCS), which is considered as one of the key NETs. If the captured carbon dioxide can be used to manufacture green fuels to replace fossil ones, then this will generate a huge additional market where pulp and paper mills are on the front line. The objective of this study is to evaluate future trends and policies affecting the pulp and paper industry and to describe how a carbon neutral or carbon negative pulp and paper production process can be viable. Such policies include, as examples, price of carbon dioxide allowances or support for green fuel production and BECCS implementation. It is known that profitability differs depending on mill type, performance, energy efficiency, or carbon dioxide intensity. The results give fresh understanding on the potential for investing in negative emission technologies. Carbon capture or green fuel production can be economical with an emission trade system, depending on electricity price, green fuel price, negative emission credit, and a mill’s emission profile. However, feasibility does not seem to evidently correlate with the performance, technical age, or the measured efficiency of the mill.