Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 2,451–2,460 of 2,498 results (Duration : 0.016 seconds)
Journal articles
Magazine articles
Open Access
Using bleaching stage models for benchmarking softwood ECF bleach plants, TAPPI Journal July 2022

ABSTRACT: Steady-state bleaching delignification and brightening models were used to gauge how well elemental chlorine-free (ECF) bleach plants were using chlorine dioxide to bleach 25-kappa softwood brownstocks. Case 1 examined the D0(EOP)D1 portion of Mill 1’s five-stage sequence that brightens the pulp to 86% ISO. Case 2 studied the D0(EO)D1 portion of Mill 2’s four-stage sequence, which brightens the pulp to 82% ISO, and Case 3 re-examined the same bleach plant several years after it made improvements around the extraction stage. The models highlighted days in the previously mentioned cases where high bleach usage occurred, presumably because of high brownstock and/or extraction washer carryover, and days where bleach usage was normal. In Case 2, the model esti-mated that 10 kg of the 44 kg chlorine dioxide/metric ton pulp consumed in bleaching was likely reacting with washer carryover sources; approximately two-thirds of this extra consumption was assumed to be reacting with extraction filtrate. Changes that Mill 2 made (Case 3) reduced the unproductive chlorine dioxide usage from 10 to 5 kg/metric ton pulp. When the delignification and brightening models were simultaneously solved, the models predicted somewhat different optimized distributions of chlorine dioxide to D0 and D1 vs. actual values used in bleach plants. However, the forecasted chlorine dioxide totals agreed with the actual values when washer carryover sources were considered. This study showed the bleaching models could be used as hypothetical benchmarks for softwood ECF bleach plants.

Journal articles
Magazine articles
Open Access
Techno-economic analysis of hydrothermal carbonization of pulp mill biosludge, TAPPI Journal March 2023

ABSTRACT: For many mills, the biosludge from wastewater treatment is difficult to recycle or dispose of. This makes it a challenging side stream and an important issue for chemical pulping. It often ends up being burned in the recovery or biomass boiler, although the moisture and non-process element (NPE) contents make it a problematic fuel. Biosludge has proven resistant to attempts to reduce its moisture. When incinerated in the biomass boiler, the heat from dry matter combustion is often insufficient to yield positive net heat. Mixing the sludge with black liquor in the evaporator plant for incineration in the recovery boiler is more energy efficient, but is still an additional load on the evaporator plant, as well as introducing NPEs to the liquor. In this study, treating the biosludge by hydrother-mal carbonization (HTC), a mild thermochemical conversion technology, is investigated. The HTC process has some notable advantages for biosludge treatment; taking place in water, it is well suited for sludge, and the hydrochar product is much easier to dewater than untreated sludge. In this study, two HTC plant designs are simulated using IPSEpro process simulation software, followed by economic analysis. Low temperature levels are used to minimize investment costs and steam consumption. The results show that if the sludge is incinerated in a biomass boiler, payback periods could be short at likely electricity prices. The HTC treatment before mixing the sludge with black liquor in the evaporator plant is profitable only if the freed evaporator capacity can be used to increase the firing liquor dry solids content.

Journal articles
Magazine articles
Open Access
Crossflow filtration of green liquor for increased pulp production, improved green liquor quality, and energy savings, TAPPI JOURNAL October 2020

ABSTRACT: A new green liquor filtration system has been installed and commissioned at the Ence pulp mill in Pontevedra, Spain. The filtration system is based on microfiltration and was developed in collaboration with the KTH Royal Institute of Technology in Stockholm, Sweden. The patented method for efficient purification of green liquor decreases the non-process element (NPE) content by providing more efficient solids/liquid separation, reducing energy and chemical consumption in pulp mills and increasing production capacity by eliminating certain capacity bottlenecks. The process has been continuously tested at the Aspa Bruk Mill outside Askersund, Sweden, since 2013. The technology has proven to create nearly particulate-free green liquor during the purification process. The technology can also be used to polish white liquor to provide higher pulp quality.To provide for a simple and cost-effective installation, the system was designed as a skid-mounted unit that is pre-piped, instrumented, and tested before shipment. The system is modular and allows for easy expansion of capacity. This paper discusses the process design, process integration, and startup of the new system, along with experiences from the first months of operation.

Journal articles
Magazine articles
Open Access
Factors affecting phosphorus uptake/dissolution during slaking and causticizing, TAPPI Journal March 2024

ABSTRACT: Hydroxide is regenerated in the recovery cycle of kraft pulp mills by the addition of lime (CaO) to green liquor. Phosphate in green liquor can react with the lime during slaking/causticizing. Total titratable alkali (TTA), sulfidity, the concentration of phosphate in the green liquor, temperature, and the liming ratio were all variables explored in this work to determine their influence on phosphorus uptake and dissolution. Experiments were also run in which the lime was slaked before being added to the green liquor to separate reactions with phosphate during slaking and reactions that occur during causticizing. Both reburnt lime and technical grade CaO were used. The experiment results indicate that phosphorus primarily reacts with slaked lime (Ca(OH)2), and that the final concentration of phosphate in the white liquor at the end of slaking and causticizing is nearly independent of the initial concentration of phosphorus and only mildly dependent on the carbonate concentration in the green liquor. There do appear to be differences in the rate at which phosphate reacts with reburnt lime and technical grade CaO, though the reason for this was not determined.

Journal articles
Magazine articles
Open Access
Understanding the pulping and bleaching performances of eucalyptus woods affected by physiological disturbance, TAPPI Journal November 2018

Understanding the pulping and bleaching performances of eucalyptus woods affected by physiological disturbance, TAPPI Journal November 2018

Journal articles
Magazine articles
Open Access
Influence of tensile straining and fibril angle on the stiffness and strength of previously dried kraft pulp fibers, TAPPI JOURNAL July 2018

Influence of tensile straining and fibril angle on the stiffness and strength of previously dried kraft pulp fibers, TAPPI JOURNAL July 2018

Journal articles
Magazine articles
Open Access
Pulp and paper mills: The original biorefineries — past performance and limitations to future opportunities, TAPPI Journal October 2023

ABSTRACT: Pulp mills have been biorefineries since the invention of the Tomlinson recovery boiler. Unfortunately, the paper industry has done a poor job explaining that concept to the general public. A number of bioproducts in everyday use have been produced by pulp mills for several decades, and new products are routinely being developed. Modern research efforts over the last couple of decades have focused on producing even more products from pulp and paper mills through capacity enhancement and the development of value-added products and liquid transportation fuels to enhance paper mill profitability. Some of these efforts, often referred to as modern biorefineries, have focused so heavily on product development that they have ignored operating and process realities that limit the transformation of pulp and paper mills from the current limited number of bioproducts produced today to economic scale production of these value-added products. In this paper, several of these limitations are addressed. In addition, there are several supply chain, marketing, product quality, and economic realities limiting the value potential for these wholesale conversions of pulp mills into multiproduct modern biorefineries. Finally, the conservative nature and capital intensity of the pulp and paper industries provide a difficult hurdle for conversion to the modern biorefinery concept. These issues are also reviewed.

Journal articles
Magazine articles
Open Access
Kraft recovery boiler operation with splash plate and/or beer can nozzles — a case study, TAPPI Journal Octobr 2021

ABSTRACT: In this work, we study a boiler experiencing upper furnace plugging and availability issues. To improve the situation and increase boiler availability, the liquor spray system was tuned/modified by testing different combinations of splash plate and beer can nozzles. While beer cans are typically used in smaller furnaces, in this work, we considered a furnace with a large floor area for the study. The tested cases included: 1) all splash plate nozzles (original operation), 2) all beer can nozzles, and 3) splash plate nozzles on front and back wall and beer cans nozzles on side walls. We found that operating according to Case 3 resulted in improved overall boiler operation as compared to the original condition of using splash plates only. Additionally, we carried out computational fluid dynamics (CFD) modeling of the three liquor spray cases to better understand the furnace behavior in detail for the tested cases. Model predictions show details of furnace combus-tion characteristics such as temperature, turbulence, gas flow pattern, carryover, and char bed behavior. Simulation using only the beer can nozzles resulted in a clear reduction of carryover. However, at the same time, the predicted lower furnace temperatures close to the char bed were in some locations very low, indicating unstable bed burning. Compared to the first two cases, the model predictions using a mixed setup of splash plate and beer can nozzles showed lower carryover, but without the excessive lowering of gas temperatures close to the char bed.

Journal articles
Magazine articles
Understanding extensibility of paper: Role of fiber elongation and fiber bonding, TAPPI Journal March 2020

ABSTRACT: The tensile tests of individual bleached softwood kraft pulp fibers and sheets, as well as the micro-mechanical simulation of the fiber network, suggest that only a part of the elongation potential of individual fibers is utilized in the elongation of the sheet. The stress-strain curves of two actual individual pulp fibers and one mimicked classic stress-strain behavior of fiber were applied to a micromechanical simulation of random fiber networks. Both the experimental results and the micromechanical simulations indicated that fiber bonding has an important role not only in determining the strength but also the elongation of fiber networks. Additionally, the results indicate that the shape of the stress-strain curve of individual pulp fibers may have a significant influence on the shape of the stress-strain curve of a paper sheet. A large increase in elongation and strength of paper can be reached only by strengthening fiber-fiber bonding, as demonstrated by the experimental handsheets containing starch and cellulose microfibrils and by the micromechanical simulations. The key conclusion related to this investigation was that simulated uniform inter-fiber bond strength does not influence the shape of the stress-strain curve of the fiber network until the bonds fail, whereas the number of bonds has an influence on the activation of the fiber network and on the shape of the whole stress-strain curve.

Journal articles
Magazine articles
Open Access
Fundamental molecular characterization and comparison of the O, D0, and E stage effluents from hardwood pulp bleaching, TAPPI Journal 2019

ABSTRACT: The present study characterized effluents from the O, D0, and E stages using nuclear magnetic reso-nance (NMR) and gel permeation chromatography (GPC) techniques to better understand the chemical nature of the dissolved organics formed from the bleaching of a high-yield hardwood kraft pulp. Understanding the structures and molecular weight distribution of these organics is the first step in developing methods to mitigate these contam-inates in the discharged effluents. The results indicated that the molecular weight distribution (MWD) of the dis-solved organics from oxygen delignification effluent is broader than those from D0 and E stage effluents. In addition, the O stage filtrate contained considerable amounts of lignin and xylan fragments, which showed its efficiency in removing such materials. The effluent from the D0 stage contained a lower amount of high molecular weight frag-ments and a higher amount of low molecular weight fragments versus the O-stage filtrate. Aromatic structures were nearly absent in the D0 stage filtrate, but the degraded organic material, presumably from oxidized lignin, contained olefinic (C=C) and carbonyl (C=O) functional groups. Furthermore, higher molecular weight fragments were detected in the E-stage effluent, presumably due to the extensive solubilization and removal of the oxidized lignin generated from the D0 pulp.