Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 251–260 of 380 results (Duration : 0.009 seconds)
Journal articles
Magazine articles
Open Access
Key material properties in crease cracking of kraft paper, TAPPI Journal February 2021

ABSTRACT: Crease cracking of paperboard is important to control for the appearance and structural integrity of packages. Crease cracking is affected by creasing operation variables, as well as the physical properties of the paperboard. However, the effects of the physical properties are not clearly known. The objectives of this work were to identify the key material properties that affect crease cracking and to clarify the effects of fiber composition and starch. Laboratory sheets were produced from bleached and refined softwood and hardwood commercial pulp at grammage and thicknesses that match a typical paperboard. To mimic papermaking operations, surface starch was applied via a bench-top size press. The sheets were creased in the lab over a range of penetration depths, and reverse-side cracking was measured. The results showed that less reverse-side cracking was correlated with higher tensile post-peak energy, a lower bending stress, and a lower z-direction (ZD) stiffness. The tensile post-peak energy is a measure of the resistance to crack growth via fiber-bridging. The bending force and the ZD stiffness influence the forces that create cracks. It was observed that decreasing the ratio of hard-wood-to-softwood content and reducing the amount of starch would both decrease crease cracking.

Journal articles
Magazine articles
Open Access
Application of foamed additives to the surface of wet handsheets, TAPPI Journal January 2021

ABSTRACT: We explored the application of foamed wet-end additives onto wet handsheets to qualify our method of application and to demonstrate the method’s usefulness for prescreening additives and foaming agents for packaging applications.We modified a laboratory drawdown coating machine to allow coating of wet handsheets with foamed additives. Initial sheet solids were adjusted to a target of 8%•25% by vacuum. Foam layer thickness was set mechanically. After application, the foamed additives were drawn into the sheet with vacuum. The additive dosage was adjusted by altering its concentration within the foaming formulation. We evaluated more than 100 foaming agents and 10 strength additives, comparing wet-end and foam-assisted addition with no addition on recycled linerboard and virgin linerboard furnish. Foam-assisted addition typically displayed a much steeper dose-response curve and much higher maximum strength levels than wet-end addition. Our results suggest potential target applications for this technology, such as lightweighting, and improved strength performance in mills with relatively closed water systems, where strength aids added into the wet end are adversely influenced by accumulation of inorganic ions and organic species.

Journal articles
Magazine articles
Open Access
The effect of contact time between CPAM and colloidal silica on the flocculation behavior in the approach flow, TAPPI Journal January 2021

ABSTRACT: Multicomponent wet-end systems have become increasingly common in papermaking, with the objective of improving the retention-formation-dewatering relationship. It is quite common to use at least a cationic polymer, often in combination with an anionic microparticle. In some cases, a fixative is also used. However, there is still debate on the optimal implementation of these systems. In particular, optimizing the contact time of the cationic polymer prior to addition of the anionic microparticle is still poorly understood. In this work, we investigate the effect of the contact time of a cationic polyacrylamide (CPAM) prior to addition of colloidal silica on the flocculation response in a flowing fiber suspension. The effect of using a fixative is also investigated. Focused beam reflectance measurements (FBRM) are combined with zeta-potential measurements for optimizing the addition levels of a two- and three-component system, as well as for elucidating the effect of contact time on CPAM performance. Trials are then performed on a pilot scale flow loop, where the time between addition of these two components is varied and the resulting flocculation response is characterized using high-speed filming and image analysis techniques. It is shown that the efficacy of CPAM can be improved through use of a fixative and that a longer CPAM contact time may be beneficial in terms of immediate flocculation; however, hydrodynamic shear tends to dominate the flocculation response regardless of contact time due to floc rupture.

Journal articles
Magazine articles
Open Access
New opportunities in the paper and nonwovens industries with foam-assisted web forming and chemical application, TAPPI Journal January 2023

ABSTRACT: Foam-assisted web forming and chemical application technologies have great potential to improve manufacturing efficiency and product quality in the paper and nonwovens industries. In this study, the benefits of foam forming and foam-assisted application of chemicals were demonstrated in a pilot machine trial. Uniform high-bulk webs of unrefined bleached softwood kraft pulp (BSKP) and viscose fibers were manufactured by foam forming. It was shown that foam formed low-grammage and high-bulk viscose fiber webs can be strengthened by foam-assisted application of latex onto the wet web. Correspondingly, foam-assisted application of carboxymethyl cellulose (CMC) and anionic polyacrylamide (A-PAM) improved the strength of the foam formed low-grammage and high-bulk BSKP web. Overall, the pilot machine results indicated that material cost savings could be achieved and a high-performance product could be manufactured with foam-based technologies.

Journal articles
Magazine articles
Open Access
On the diagnosis of a fouling condition in a kraft recovery boiler: combining process knowledge and data-based insights, TAPPI Journal March 2023

ABSTRACT: Fouling is still a major challenge for the operation of kraft recovery boilers. This problem is caused by accumulation of ash deposits on the surfaces of heat exchangers in the upper part of the boiler over time. The first consequence is the reduction of steam production due to loss of heat transfer and, finally, the shutdown of the boiler due to clogging. The present work investigated the operational condition of a modern kraft boiler under a critical fouling condition. This boiler had even faced a manual cleaning due to a clogging event. This analysis combined process knowledge, plant team experience, and a data-driven approach, given the complexity of the process. In this sense, historical data covering this critical period of operation were collected. After a cleaning procedure, they were used to obtain a predictive neural network model for the flue gas pressure drop in the boiler bank, which is an indirect measure of ash deposit accumulation. Once validated, it was used for sensitivity analysis, with the aim of quantifying the effects of the model inputs. Five variables out of eighteen accounted for nearly 60% of the total effect on pressure drop. Namely, primary air temperature (21.6% of the total effect) and flow rate (11.1%), black liquor flow rate (9.9%) and temperature (8.4%), and white liquor sulfidity (8.6%). The analysis of these results mainly suggested an excess of carryover, which composes the ash deposits. Recommended actions to mitigate the fouling condition involved adjustments to the primary air system before the more drastic solution of reducing the boiler load.

Journal articles
Magazine articles
Open Access
The winding mechanics of laminate webs, TAPPI Journal February 2020

ABSTRACT: Models that describe the residual stresses due to winding single-layer webs at the end of roll-to-roll manufacturing machines are mature. These models have been used to reduce or avoid defects that are due to winding. Many laminated products exist where two or more webs have been joined to form a thicker composite web. The properties of the web layers provide a unique functionality to the product being manufactured. No laminate winding models exist in the literature. This paper will focus on the development of a laminate winding model and laboratory test verification of the model.

Journal articles
Magazine articles
Open Access
Case study: Paper mill power plant optimization—balancing steam venting with mill demand, TAPPI Journal June 2020

ABSTRACT: Most Power departments are tasked with generating steam to support mill wide operations, generate electricity, and reduce operating costs. To accomplish these tasks, power boilers generate high pressure steam that is reduced to intermediate and low pressures for process utilization in the mill by means of steam turbine generator extraction or pressure reducing valves. The most economical method to reduce steam pressure is the use of steam turbine generators, as electricity is generated from the steam when it is reduced in pressure. Electricity that is produced by these generators provides a substantial financial benefit and helps offset overall operational costs. To achieve tangible financial gains, the mill must evaluate the overall cost of steam production and the price of electricity.The current work provides a case study of power plant optimization that evaluated electricity production and steam production costs balanced with mill steam demand. Process and cost optimization led to a significant reduc-tion in low pressure steam venting, resulting in reduced fuel consumption and reduced operating cost.

Journal articles
Magazine articles
Open Access
Web lateral instability caused by nonuniform paper properties, TAPPI Journal January 2022

ABSTRACT: Lateral or cross-machine direction (CD) web movement in printing or converting can cause problems such as misregistration, wrinkles, breaks, and folder issues. The role of paper properties in this problem was studied by measuring lateral web positions on commercial printing presses and on a pilot-scale roll testing facility (RTF). The findings clearly showed that CD profiles of machine direction (MD) tension were a key factor in web stability. Uneven tension profiles cause the web to move towards the low-tension side. Although extremely nonuniform tension profiles are visible as bagginess, more often, tension profiles must be detected by precision devices such as the RTF. Once detected, the profiles may be analyzed to determine the cause of web offset and weaving problems.Causes of tension profiles can originate from nonuniform paper properties. For example, by means of case studies, we show that an uneven moisture profile entering the dryer section can lead to a nonuniform tension profile and lateral web movement. Time-varying changes in basis weight or stiffness may also lead to oscillations in the web’s lateral position. These problems were corrected by identifying the root cause and making appropriate changes. In addition, we developed a mathematical model of lateral stability that explains the underlying mechanisms and can be used to understand and correct causes of lateral web instability.

Journal articles
Magazine articles
Open Access
Application of ATR-IR measurements to predict the deinking efficiency of UV-cured inks, TAPPI Journal January 2022

ABSTRACT: In recent years, ultraviolet (UV)-curable ink has been developed and widely used in various printing applications. However, using UV-printed products (UV prints) in recovered paper recycling causes end-product dirt specks and quality issues. A new method was developed that can distinguish UV prints from other prints by means of attenuated total reflectance infrared (ATR-IR) spectroscopy. Application of this method could allow more efficient use of UV prints as raw materials for paper recycling.First, a mill trial was performed using UV prints alone as raw materials in a deinked pulp (DIP) process. Second, test prints were made with four types of UV inks: a conventional UV ink and three different highly-sensitive UV inks. Each print sample had four levels of four-color ink coverage patterns (100%, 75%, 50%, and 25%). Next, deinkability of all prints was evaluated by laboratory experiments. Finally, each print was measured using the ATR-IR method, and the relationship between the IR spectra and deinkability was investigated. Mill trial results showed that UV prints caused more than 20 times as many dirt specks as those printed with conventional oil-based ink. There were variations in recycling performance among UV prints taken from bales used for the mill trial. Lab tests clearly revealed that not all UV-printed products lead to dirt specks. In order to clarify the factors that affected deinkability of UV prints, the print samples were investigated by lab experiments. Key findings from lab experiments include: œ The number of dirt specks larger than 250 µm in diameter increased as the ink coverage increased. œ Higher ink coverage area showed stronger intensity of ATR-IR spectral bands associated with inks. These results indicate that deinkability of UV prints could be predicted by analysis of ATR-IR spectra. œ Finally, the method was applied for assessment of recovered paper from commercial printing presses. It was confirmed that this method made it possible to distinguish easily deinkable UV prints from other UV prints. Based on these findings, we concluded that the ATR-IR method is applicable for inspection of incoming recovered paper.

Journal articles
Magazine articles
Open Access
Dynamic out-of-plane compression of paperboard — Influence of impact velocity on the surface, TAPPI Journal February 2024

ABSTRACT: Processes that convert paperboard into finished products include, for example, printing, where the paperboard is subjected to rapid Z-directional (ZD) compression in the print nip. However, measuring and evaluating the relevant properties in the thickness direction of paperboard are not necessarily straightforward or easy. Measuring at relevant, millisecond deformation rates further complicates the problem. The aim of the present work is to elucidate some of the influences on the compressive stiffness. Both the initial material response and the overall compressibility of the paperboard is studied. In this project, the effect on the material response from the surface structure and the millisecond timescale recovery is explored.The method utilized is a machine called the Rapid ZD-tester. The device drops a probe in freefall on the substrate and records the probe position, thus acquiring the deformation of the substrate. The probe is also allowed to bounce several times on the surface for consecutive impacts before being lifted for the next drop. To investigate the time dependent stiffness behavior, the probe is dropped several times at the same XY position on the paperboard from different heights, thus achieving different impact velocities. The material response from drops and bounces combined allows study of the short-term recovery of the material. The material in the study is commercial paperboard. The paperboard samples are compared to material where the surface has been smoothed by grinding it. Our study shows that there is a non-permanent reduction in thickness and a stiffening per bounce of the probe, indicating a compaction that has not recovered in the millisecond timescale. Additionally, a higher impact velocity has an initial stiffening effect on the paperboard, and this is reduced by smoothing the surface.