Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 251–260 of 270 results (Duration : 0.011 seconds)
Journal articles
Magazine articles
Open Access
Preparing prehydrolyzed kraft dissolving pulp via phosphotungstic acid prehydrolysis from grape branches, TAPPI Journal January 2022

ABSTRACT: Dissolving pulp was successful prepared via phosphotungstic acid (PTA) prehydrolysis kraft (PHK) cooking followed by an elementary chlorine-free (ECF) bleaching process from grape branches. The effects of prehydrolysis temperature, reaction time, and PTA concentration that potentially affect the quality of dissolving pulp product on chemical components of pulp were studied via an orthogonal experiment. The structure of lignin was activated during the PTA prehydrolysis phase, and lignin was easily removed during the following cooking process. Thus, relatively mild conditions (140°C, 100 min) can be used in the cooking process. During the prehydrolysis phase, temperature exhibited the most significant influence on the cellulose purity of the obtained pulp fiber, followed by reaction time and PTA concentration. The optimized prehydrolysis conditions were as follows: prehydrolysis temperature, 145°C; reaction time, 75 min; and PTA concentration, 1 wt%. Whether the excessively high prehydrolysis temperature or prolonging the reaction time did not favor the retention of long chain cellulose, the delignification selectivity for the cooking process could not be further improved by excessive PTA loading. Under these prehydrolysis conditions, 94.1% and 29.0% for a-cellulose content and total yield could be achieved after the given cooking and bleaching conditions, respectively. Moreover, the chemical structure and crystal form of cellulose were scarcely changed after PTA prehydrolysis, which could be confirmed by results from Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). PTA prehydrolysis could be considered as an alternative method for preparing PHK dissolving pulp under relatively mild cooking conditions.

Journal articles
Magazine articles
Open Access
Can carbon capture be a new revenue opportunity for the pulp and paper sector?, TAPPI Journal August 2021

ABSTRACT: Transition towards carbon neutrality will require application of negative carbon emission technologies (NETs). This creates a new opportunity for the industry in the near future. The pulp and paper industry already utilizes vast amounts of biomass and produces large amounts of biogenic carbon dioxide. The industry is well poised for the use of bioenergy with carbon capture and storage (BECCS), which is considered as one of the key NETs. If the captured carbon dioxide can be used to manufacture green fuels to replace fossil ones, then this will generate a huge additional market where pulp and paper mills are on the front line. The objective of this study is to evaluate future trends and policies affecting the pulp and paper industry and to describe how a carbon neutral or carbon negative pulp and paper production process can be viable. Such policies include, as examples, price of carbon dioxide allowances or support for green fuel production and BECCS implementation. It is known that profitability differs depending on mill type, performance, energy efficiency, or carbon dioxide intensity. The results give fresh understanding on the potential for investing in negative emission technologies. Carbon capture or green fuel production can be economical with an emission trade system, depending on electricity price, green fuel price, negative emission credit, and a mill’s emission profile. However, feasibility does not seem to evidently correlate with the performance, technical age, or the measured efficiency of the mill.

Journal articles
Magazine articles
Open Access
Economic and competitive potential of lignin-based thermoplastics using a multicriteria decision-making method, TAPPI Journal September 2022

ABSTRACT: As a result of new lignin extraction plants hatching and increasing volumes of technical lignin becoming available, a variety of lignin derivatives, including phenolic resins and polyurethane (PU) foams, are reaching the marketplace or being used as intermediate products in many industrial applications. In the spectrum of possible lignin derivatives, thermoplastics appear particularly attractive due to a symbiosis of market, policy, and technology drivers. To assess the preferredness for lignin-based thermoplastics, this paper adapted a risk-oriented methodology formerly applied to assess lignin usage in various applications (phenol-formaldehyde [PF] resins, PU foams, and carbon fiber applications) to the case of lignin-based thermoplastics using hydroxypropylated lignin (HPL) and miscible blends of lignin and polyethylene oxide (PEO). The HPL is considered for garbage bags and agricultural films applications, while lignin-PEO blends are used as replacement for acrylonitrile butadiene styrene (ABS) in applications such as automotive parts. In the methodology, two phased-implementation strategies were defined for each thermoplastic derivative, considering perspectives for profit maximization (90 metric tons/day integrated units) and revenue growth (350 metric tons/day overall capacity), which were considered for implementation within a softwood kraft pulping mill. A set of six criteria representative of the main economic and market competitiveness issues were employed, and their respective importance weights were obtained in a multicriteria decision-making (MCDM) panel.Early-stage techno-economic estimates were done as a basis for the calculation of decision criteria. Compared to product derivatives previously assessed, capital investment for thermoplastic strategies appeared marginally higher due to the required lignin modification steps (on average 30% higher at similar capacity, and 6% for higher-scale revenue diversification strategies). Higher operating costs were also observed due to increased chemical expenses for all thermoplastic strategies, which are ultimately balanced by revenues associated with targeted thermoplastic products, leading to greater annual margins and cash flow generation over the project lifetime for thermoplastic strategies compared to other product applications (58% to 66% higher on average, at similar scale). Benefits of improved economics were reflected in economic criteria, internal rate of return (IRR), and cash flow on capital employed (CFCE), as well as in the price competitiveness criterion, CPC. Overall, the combination of relatively high lignin content in the plastic formulation and the less costly modification method contributed to lignin-PEO strategies, gaining the top two rankings. Based on their overall scores, both strategies defined for HPL would also integrate the group of “preferred” strategies, but are outranked by strategies that consider lignin positioning on PU foam applications.

Journal articles
Magazine articles
Open Access
Control of malodorous gases emission from wet-end white water with hydrogen peroxide, TAPPI Journal October 2021

ABSTRACT: White water is highly recycled in the papermaking process so that its quality is easily deteriorated, thus producing lots of malodorous gases that are extremely harmful to human health and the environment. In this paper, the effect of hydrogen peroxide (H2O2) on the control of malodorous gases released from white water was investigated. The results showed that the released amount of total volatile organic compounds (TVOC) decreased gradually with the increase of H2O2 dosage. Specifically, the TVOC emission reached the minimum as the H2O2 dosage was 1.5 mmol/L, and meanwhile, the hydrogen sulfide (H2S) and ammonia (NH3) were almost completely removed. It was also found that pH had little effect on the release of TVOC as H2O2 was added, but it evidently affect-ed the release of H2S and NH3. When the pH value of the white water was changed to 4.0 or 9.0, the emission of TVOC decreased slightly, while both H2S and NH3 were completely removed in both cases. The ferrous ions (Fe2+) and the copper ions (Cu2+) were found to promote the generation of hydroxyl radicals (HO•) out of H2O2, enhancing its inhibition on the release of malodorous gases from white water. The Fe2+/H2O2 system and Cu2+/H2O2 system exhibited similar efficiency in inhibiting the TVOC releasing, whereas the Cu2+/H2O2 system showed better perfor-mance in removing H2S and NH3.

Journal articles
Magazine articles
Open Access
Production of antimicrobial paper using nanosilver, nanocellulose, and chitosan from a coronavirus perspective, TAPPI Journal July 2021

ABSTRACT: The pulp and paper industry has an opportunity to play a vital role in breaking the spread of the COVID-19 pandemic through production that supports widespread use of antimicrobial paper. This paper provides a brief review of paper and paper-related industries, such as those producing relevant additives, and R&D organizations that are actively engaged in developing antimicrobial papers. The focus here is on the potential of three nano-additives for use in production of antimicrobial papers that combat coronavirus: nanosilver, nanocellulose, and chitosan. Various recent developments in relevant areas and concepts underlining the fight against coronavirus are also covered, as are related terms and concepts.

Journal articles
Magazine articles
Open Access
Boiler retrofit improves efficiency and increases biomass firing rates, TAPPI Journal March 2021

ABSTRACT: Domtar’s fluff pulp mill in Plymouth, NC, USA, operates two biomass/hog fuel fired boilers (HFBs). For energy consolidation and reliability improvement, Domtar wanted to decommission the No. 1 HFB and refurbish/retrofit the No. 2 HFB. The No. 2 HFB was designed to burn pulverized coal and/or biomass on a traveling grate. The steaming capacity was 500,000 lb/h from coal and 400,000 lb/h from biomass. However, it had never sustained this design biomass steaming rate. As the sole power boiler, the No. 2 HFB would need to sustain 400,000 lb/h of biomass steam during peak loads. An extensive evaluation by a combustion and boiler technologies supplier was undertaken. The evaluation involved field testing, analysis, and computational fluid dynamics (CFD) modeling, and it identified several bottle-necks and deficiencies to achieving the No. 2 HFB’s biomass steam goal. These bottlenecks included an inadequate combustion system; insufficient heat capture; excessive combustion air temperature; inadequate sweetwater con-denser (SWC) capacity; and limited induced draft fan capacity.To address the identified deficiencies, various upgrades were engineered and implemented. These upgrades included modern pneumatic fuel distributors; a modern sidewall, interlaced overfire air (OFA) system; a new, larger economizer; modified feedwater piping to increase SWC capacity; replacement of the scrubber with a dry electrostatic precipitator; and upgraded boiler controls.With the deployment of these upgrades, the No. 2 HFB achieved the targeted biomass steaming rate of 400,000 lb/h, along with lowered stack gas and combustion air temperatures. All mandated emissions limit tests at 500,000 lb/h of steam with 400,000 lb/h of biomass steam were passed, and Domtar reports a 10% reduction in fuel firing rates, which represents significant fuel savings. In addition, the mill was able to decommission the No. 1 HFB, which has substantially lowered operating and maintenance costs.

Journal articles
Magazine articles
Open Access
Commercially relevant water vapor barrier properties of high amylose starch acetates: Fact or fiction?, TAPPI Journal September 2021

ABSTRACT: Starches have recently regained attention as ecofriendly barrier materials due to the increased demand for sustainable packaging. They are easily processable by conventional plastics processing equipment and have been utilized for oil and grease barrier applications. While starches have excellent oxygen barrier properties and decent water barrier properties at low relative humidity (RH), they are moisture sensitive, as demonstrated by the deterioration of the barrier properties at higher RH values. Starch esters are chemically modified starches where the hydroxyl group of the starch has been substituted by other moieties such as acetates. This imparts hydrophobicity to starches and has been claimed as a good way of retaining water vapor barrier properties of starches, even at high RH conditions. We studied the water vapor barrier properties of one class of starch esters, i.e., high amylose starch acetates that were assumed to have good water vapor barrier properties. Our investigations found that with a high degree of substitution of hydroxyl groups, the modified starches did indeed show improvements in water vapor response as compared to pure high amylose starch films; however, the barrier properties were orders of magnitude lower than commercially used water vapor barriers like polyethylene. Even though these materials had improved water vapor barrier response, high amylose starch acetates are likely unsuitable as water vapor barriers by themselves, as implied by previous literature studies and patents.

Journal articles
Magazine articles
Open Access
Advantages of lean duplex stainless steels in the pulp and paper industry, TAPPI Journal April 2023

ABSTRACT: The performance of lean duplex stainless steels has been utilized by the pulp and paper industry since their introduction to the market almost 20 years ago. Experience has shown that this group of stainless steels has exceptional performance in, for example, alkaline environments towards typical deterioration mechanisms, i.e., uniform corrosion and stress corrosion cracking. The chemistry of the “lean” duplex steels is designed so that the content of volatile and expensive elements like nickel and molybdenum can be reduced to an absolute minimum without sacrificing the technical performance. This reduces the raw material cost and most importantly provides predictability of the steel price, which is often challenging with conventional austenitic and duplex stainless steels.Thanks to a dual phase microstructure and high nitrogen content, lean duplex steels have at least two times higher strength compared to standard austenitic stainless steels. This is often a preferred feature in pulp and paper construction, as it enables lighter structures and less material to be utilized. Today, lean duplex steels are widely available in various dimensions, from thin cold rolled sheets up to thick hot rolled plates. Lean duplex steels are also fully recyclable after the decommissioning stage of the equipment, thereby contributing to the circular economy.

Journal articles
Magazine articles
Open Access
Application of spruce wood flour as a cellulosic-based wood additive for recycled paper applications— A pilot paper machine study, TAPPI Journal October 2021

ABSTRACT: This study gives a first insight into the use of wood flour as a plant-based and cellulosic-based alter-native additive for newsprint and paperboard production using 100% recycled fibers as a raw material. The study compares four varieties of a spruce wood flour product serving as cellulosic-based additives at addition rates of 2%, 4%, and 6% during operation of a 12-in. laboratory pilot paper machine. Strength properties of the produced news-print and linerboard products were analyzed. Results suggested that spruce wood flour as a cellulosic-based additive represents a promising approach for improving physical properties of paper and linerboard products made from 100% recycled fiber content. This study shows that wood flour pretreated with a plant-based polysaccharide and untreated spruce wood flour product with a particle size range of 20 μm to 40 μm and 40 μm to 70 μm can increase the bulk and tensile properties in newsprint and linerboard applications.

Journal articles
Magazine articles
Open Access
Corrosion damage and in-service inspection of retractable sootblower lances in recovery boilers, TAPPI Journal October 2021

ABSTRACT: Several reports of accidents involving serious mechanical failures of sootblower lances in chemical recovery boilers are known in the pulp and paper industry. These accidents mainly consisted of detachment and ejection of the lance tip, or even of the entire lance, to the inside of the furnace, towards the opposite wall. At least one of these cases known to the author resulted in a smelt-water explosion in the boiler.In other events, appreciable damage or near-miss conditions have already been experienced. The risk of catastrophic consequences of the eventual detachment of the lance tip or the complete lance of a recovery boiler soot-blower has caught the attention of manufacturers, who have adjusted their quality procedures, but this risk also needs to be carefully considered by the technical staff at pulp mills and in industry committees.This paper briefly describes the failure mechanisms that prevailed in past accidents, while recommending inspection and quality control policies to be applied in order to prevent further occurrences of these dangerous and costly component failures. Digital radiography, in conjunction with other well known inspection techniques, appears to be an effective means to ensure the integrity of sootblower lances in chemical recovery boilers used in the pulp and paper industry.