Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Chemical addition to wet webs using foam application, TAPPI Journal January 2023
ABSTRACT: In papermaking, the conventional way to add chemicals to the web is to dose them into the fiber stock and form the paper afterwards. However, in many cases, adding chemicals directly to the stock is challenging. For example, strength aids tend to increase flocculation in the stock, which limits the addition amounts of those aids. The need for better performance of paper (and paperboard) products has given rise to the need for functionalization of paper. Adding such functional chemicals to the stock is usually rather inefficient. Hence, novel methods are needed to add chemicals to the paper bulk. One such method is dosing chemicals to the wet web via foam application. In this study, we built a laboratory-scale sheetfed dynamic foam application device and utilized it to study addition of starch to wet bleached chemithermomechanical pulp (BCTMP) paper handsheets. The impact of parameters such as vacuum level, the amount of added chemical, and the viscosity of the foaming liquid on the penetration of starch into the wet web was explored. Starch penetration into wet webs was measured via iodine-potassium iodide staining, followed by image analysis. According to our results, controlling the viscosity of the foaming liquid gives the best possibility to control the penetration.
Journal articles
Magazine articles
Pareto-based design of experiments for identifying and comparing optimum sealing parameters of heat sealing applications in packaging machines, TAPPI Journal June 2023
ABSTRACT: Sealing is one of the most important process steps in industrial packaging, because the sealed seam is the most sensitive section of a package in terms of quality. For this reason, a major focus in flexible packaging is the sealing process, and among this, heat sealing is the most frequently used technology. In detail, applications of heat sealing processes are confronted with four conflicting objectives: increasing seam quality, reducing dwell time, reducing sealing temperature, and increasing process robustness towards varying conditions. Typical problems, such as identification of the optimum process parameters or selection of the most appropriate packaging film, are subject to these conflicting objectives.This paper presents a recently published design of experiments for characterizing and comparing heat sealing properties of packaging films based on a multi-objective optimization algorithm. The approach provides easy-to-read charts showing all optimum sealing parameters with regard to the four essential objectives of heat sealing: seam quality, dwell time, sealing temperature, and process robustness. Three case studies show exemplary applications of the new approach: 1) analyzing transport damages of beverage powder packages; 2) identifying and comparing optimum sealing parameter of a standard, mono-material, and fiber based packaging film regarding tightness and visual properties of the produced sachets; and 3) analyzing the effect of additional aluminum layers on sealing characteristics regarding hot-tack.The new design of experiments may provide the basis of a standard test method for the identification of optimal sealing parameters in the heat sealing processes.
Journal articles
Magazine articles
Comparative analysis and benchmarking of commercial and emerging fast pyrolysis technologies, TAPPI Journal May 2023
ABSTRACT: It is well established that producing sustainable fuels and replacing the fossil-based ones is one of the key solutions to achieving net-zero emissions goals. One of the most advanced commercial-scale pathways to biofuels available today is fast pyrolysis. However, due to the need for a supportive regulatory environment and mitigation strategies for uncertainties related to costs and feedstock quality, fast pyrolysis is not yet being widely implemented. In this case study, three fast pyrolysis technologies with a technology readiness level (TRL) of 6 and above have been compared to distinguish between them and identify the conditions under which they are economically viable. The circulating fluidized bed (CFB), rotating cone (RC), and mechanically assisted fluidized bed (MFB) fast pyrolysis technologies were considered. First, the flow diagram and a mass and energy balance comparison were addressed. It was revealed that the RC configuration has better bio-oil yields because it can handle smaller particles. The MFB configuration has a progressive condensation unit at the end of the process, which produces a nearly dry oil having a higher energy content. Four implementation scenarios were studied. The first was the fast pyrolysis standalone process, where all options had marginal economic attractiveness, and the RC configuration economically outperformed the other two. Integration of a fast pyrolysis plant into a sawmill in the second scenario was found to bring significant improvements in revenues and internal rate of return (IRR). Realization of the full value of bio-oil (the third scenario) brought significantly more revenues for the MFB. Finally, the fourth scenario involved adding a progressive condensation unit, which increased the capital expenditure (CAPEX) by 3%•4% while increasing revenues by 32%•35%. A sensitivity analysis highlighted the importance of financial support towards capital cost and the full valuation of bio-oil for the economic viability of fast pyrolysis processes. Progressive condensation leading to more added-value bio-oil makes the standalone fast pyrolysis process more profitable.
Journal articles
Magazine articles
Dielectric spectroscopic studies of biological material evolution and application to paper, TAPPI JOURNAL September 2018
Dielectric spectroscopic studies of biological material evolution and application to paper, TAPPI JOURNAL September 2018
Journal articles
Magazine articles
Mineral/microfibrillated cellulose composite materials: High performance products, applications, and product forms, TAPPI JOURNAL September 2018
Mineral/microfibrillated cellulose composite materials: High performance products, applications, and product forms, TAPPI JOURNAL September 2018
Journal articles
Magazine articles
Progress in foam forming technology, TAPPI JOURNAL August 2019
ABSTRACT: This paper summarizes recent developments in foam forming that were mainly carried out in pilot scale. In addition to improving the efficiency of existing processes and allowing better uniformity in material, a wide variety of raw materials can be utilized in foam forming. The focus of this paper is thin webs—papers, boards and foam-laid nonwovens, along with the pilot scale results obtained at VTT in Finland. For paper and board grades, the most direct advantage of foam forming is the potential to produce very uniform webs from longer and coarser fibers and obtain material savings through that. Another main point is increased solids content after a wet press, which may lead to significant energy savings in thermal drying. Finally, the potential to introduce “difficult” raw materials like long synthetic or manmade fibers into a papermaking process enables the manufacturing of novel products in an existing production line. This paper also briefly discusses other interesting foam-based applications, including insulation and absorbing materials, foam-laid nonwovens, and materials for replacing plastics.
Journal articles
Magazine articles
Optimazation of coating with water-based barriers, TAPPI Journal February 2019
Optimazation of coating with water-based barriers, TAPPI Journal February 2019
Journal articles
Magazine articles
Editorial: Lignin: Nature’s versatile polymer as a potent chemical platform for 21st century challenges, TAPPI Journal January 2019
Editorial: Lignin: Nature’s versatile polymer as a potent chemical platform for 21st century challenges, TAPPI Journal January 2019
Journal articles
Magazine articles
Kraft pulp bleaching with a P-stage catalyzed by both bicarbonate and TAED, TAPPI Journal July 2019
ABSTRACT: Peroxide bleaching of softwood and hardwood (eucalypt) kraft pulps was performed in solutions of sodium bicarbonate (NaHCO3), sodium carbonate (Na2CO3), and sodium hydroxide (NaOH). The conventional P stage (hydrogen peroxide + sodium hydroxide; H2O2 + NaOH) was the most effective brightening system without an additional activator. However, peroxide activation by bicarbonate anion (HCO3•) was obvious in all cases where NaHCO3 or Na2CO3 was used. When N,N,N’,N’-tetraacetylethylenediamine (TAED) was added to the bleaching sys-tem, Na2CO3 as the alkali source afforded equal or slightly higher bleached brightness compared to NaOH usage for both the softwood and hardwood pulps. This outcome is attributed to simultaneous peroxide activation by HCO3• and TAED. When applied to the eucalypt pulp, the H2O2/Na2CO3/TAED bleaching system also decreased the bright-ness loss due to thermal reversion.
Journal articles
Magazine articles
Enhancement of processability, surface, and mechanical properties of paper based on rice straw pulp using biopolymers for packaging applications, TAPPI Journal July 2019
ABSTRACT: wo biopolymers, chitosan and oxidized starch, were used as wet-end additives to improve the strength properties of the paper because of their biodegradable and non-hazardous qualities. The present study reports the improvement in surface and strength properties of packaging-grade paper made with rice straw pulp using biopolymers, chitosan, oxidized starch, and surface sizing added at the wet end of the paper machine.Use of chitosan at all doses from 0.5 to 10 kg/ton enhanced important surface and strength properties of paper. The breaking length, tear index, burst index, ring crush strength, stretch, tensile energy absorption index, and Taber stiff-ness of the paper with 10 kg/ton of chitosan as a wet-end additive showed 22%, 14%, 20%, 59%, 16%, 44%, and 48% improvement, respectively, in comparison to control, (i.e, without its addition). The Cobb60 was also reduced by 45%, showing better resistance to water in comparison to rice straw paper alone. The effects of chitosan added at the wet end on the paper surface were investigated using Fourier transform infrared spectroscopy (FTIR). The use of 10 kg/ton of chitosan at the wet end reduced the color and total suspended solids in the back water of the papermak-ing system by 55% and 51%, respectively. Further enhancement in the surface and strength properties of paper was observed following surface sizing with oxidized starch.