Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Collections
Magazine articles
Sheet hole and defect identification, TAPPI JOURNAL, May 2000, Vol. 83(5)
Sheet hole and defect identification, TAPPI JOURNAL, May 2000, Vol. 83(5)
Magazine articles
People development in research and technology organizations, TAPPI JOURNAL, October 2000, Vol. 83(10)
People development in research and technology organizations, TAPPI JOURNAL, October 2000, Vol. 83(10)
Magazine articles
What's new with tappi test methods?, TAPPI JOURNAL, September 2000, Vol. 83(9)
What's new with tappi test methods?, TAPPI JOURNAL, September 2000, Vol. 83(9)
Journal articles
Magazine articles
On the nominal transverse shear strai to characterize the severity of creasing, TAPPI JOURNAL April 2018
On the nominal transverse shear strai to characterize the severity of creasing, TAPPI JOURNAL April 2018
Magazine articles
Pump bearings: a new bearing system to improve reliability, TAPPI JOURNAL, March 1990, Vol. 73(3)
Pump bearings: a new bearing system to improve reliability, TAPPI JOURNAL, March 1990, Vol. 73(3)
Magazine articles
Measuring customer perception of print quality, TAPPI JOURNAL, March 1990, Vol. 73(3)
Measuring customer perception of print quality, TAPPI JOURNAL, March 1990, Vol. 73(3)
Magazine articles
Slotted headbx screening for fine, publication, and newsprint grades, TAPPI JOURNAL, April 1990, Vol. 73(4)
Slotted headbx screening for fine, publication, and newsprint grades, TAPPI JOURNAL, April 1990, Vol. 73(4)
Journal articles
Magazine articles
Can carbon capture be a new revenue opportunity for the pulp and paper sector?, TAPPI Journal August 2021
ABSTRACT: Transition towards carbon neutrality will require application of negative carbon emission technologies (NETs). This creates a new opportunity for the industry in the near future. The pulp and paper industry already utilizes vast amounts of biomass and produces large amounts of biogenic carbon dioxide. The industry is well poised for the use of bioenergy with carbon capture and storage (BECCS), which is considered as one of the key NETs. If the captured carbon dioxide can be used to manufacture green fuels to replace fossil ones, then this will generate a huge additional market where pulp and paper mills are on the front line. The objective of this study is to evaluate future trends and policies affecting the pulp and paper industry and to describe how a carbon neutral or carbon negative pulp and paper production process can be viable. Such policies include, as examples, price of carbon dioxide allowances or support for green fuel production and BECCS implementation. It is known that profitability differs depending on mill type, performance, energy efficiency, or carbon dioxide intensity. The results give fresh understanding on the potential for investing in negative emission technologies. Carbon capture or green fuel production can be economical with an emission trade system, depending on electricity price, green fuel price, negative emission credit, and a mill’s emission profile. However, feasibility does not seem to evidently correlate with the performance, technical age, or the measured efficiency of the mill.
Journal articles
Magazine articles
Fundamental understanding of removal of liquid thin film trapped between fibers in the paper drying process: A microscopic approach, TAPPI Journal May 2020
ABSTRACT: In the fabrication of paper, a slurry with cellulose fibers and other matter is drained, pressed, and dried. The latter step requires considerable energy consumption. In the structure of wet paper, there are two different types of water: free water and bound water. Free water can be removed most effectively. However, removing bound water consumes a large portion of energy during the process. The focus of this paper is on the intermediate stage of the drying process, from free water toward bound water where the remaining free water is present on the surfaces of the fibers in the form of a liquid film. For simplicity, the drying process considered in this study corresponds to pure convective drying through the paper sheet. The physics of removing a thin liquid film trapped between fibers in the paper drying process is explored. The film is assumed to be incompressible, viscous, and subject to evaporation, thermocapillarity, and surface tension. By using a volume of fluid (VOF) model, the effect of the previously mentioned parameters on drying behavior of the thin film is investigated.
Journal articles
Magazine articles
Investigation of the influencing factors in odor emission from wet-end white water, TAPPI Journal October 2020
ABSTRACT: Emission of malodorous gases, such as volatile organic compounds (VOCs), hydrogen sulfide (H2S), and ammonia (NH3) during pulping and papermaking has caused certain harm to the air environment and human health. This paper investigated the influencing factors of odor emission from wet-end white water during the production of bobbin paper in a papermaking mill using old corrugated containers (OCC) as raw material. The concentration of malodorous gases emitted from wet-end white water was determined with pump-suction gas detectors. The results indicated that low temperature could limit the release of malodorous gases from white water. Specifically, no total volatile organic compounds (TVOC), H2S, and NH3 was detected at a temperature of 15°C. The concentrations of malodorous gases were slightly increased when temperature increased to 25°C. When temperature was 55°C, the released concentrations of TVOC, H2S, and NH3 were 22.3 mg/m3, 5.91 mg/m3, and 2.78 mg/m3, respectively. Therefore, the content of malodorous gases significantly increased with the temperature increase. The stirring of white water accelerated the release of malodorous gases, and the release rate sped up as the stirring speed increased. However, the total amount of malodorous gases released were basically the same as the static state. Furthermore, the higher the concentration of white water, the greater the amount of malodorous gases released. The pH had little influence on the TVOC release, whereas it significantly affected the release of H2S and NH3. With the increase of pH value, the released amount of H2S and NH3 gradually decreased. When pH reached 9.0, the release amount of H2S and NH3 was almost zero, proving that an alkaline condition inhibits the release of H2S and NH3.