Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 2,991–3,000 of 3,127 results (Duration : 0.013 seconds)
Journal articles
Magazine articles
Open Access
Three-dimensional pore structure visualization and character

Three-dimensional pore structure visualization and characterization of paper using X-ray computed tomography, TAPPI JOURNAL September 2017

Journal articles
Magazine articles
Open Access
Calender barring review with experiences, TAPPI Journal July 2022

ABSTRACT: Excessive calender vibration affects all styles of calender stacks from single to multi-nip, all hard rolls, or a combination of hard and soft rolls. Calender vibration can be forced vibration or self-excited vibration. Forced vibration occurs at the first few harmonics of the calender roll rotational speeds and is caused by imbalance, misalignment, eccentricity, etc. Self-excited vibration, the focus of this paper, occurs at higher frequencies. Feedback paths for self-excited vibration must be understood in order to ameliorate the problem. This is presented in the context of the historical development of the theory of self-excited feedback mechanisms, followed by a survey of self-excited feedback mechanisms in various types of calender stacks. Methodology to determine which feed-back path is present and techniques to control or eliminate the resulting vibration follow. To obtain a flavor of the types of problems faced and practical remedial actions, a variety of experiences with barring issues are provided.

Journal articles
Magazine articles
Open Access
Effects of phosphogypsum whiskers modification with calcium stearate and their impacts on properties of bleached softwood paper sheets, TAPPI Journal September 2021

ABSTRACT: By combining the structural properties and characteristics of phosphogypsum whiskers, a preliminary study on the modification of phosphogypsum whiskers and their application in papermaking was carried out. The effects of reaction temperature, reaction time, and reaction concentration on the solubility and retention of modified phosphogypsum whiskers and the effects of phosphogypsum whiskers on the physical properties of paper under different modified conditions were explored. The research results show that, after the phosphogypsum whiskers are modified with calcium stearate, a coating layer will be formed on the surface of the whiskers, which effectively reduces the solubility of the phosphogypsum whiskers. The best modification conditions are: the amount of calcium stearate relative to the absolute dry mass of the phosphogypsum whisker is 2.00%; the modification time is 30 min, and the modification temperature is 60°C. The use of modified phosphogypsum whiskers for paper filling will slightly reduce the whiteness, folding resistance, burst resistance, and tensile strength of the paper, but the tearing degree and retention of the filler will be increased to some extent.

Journal articles
Magazine articles
Open Access
The Shendye-Fleming OBA Index for paper and paperboard, TAPPI Journal March 2022

ABSTRACT: We are proposing a new one-dimensional scale to calculate the effects of optical brightening agents (OBA) on the bluish appearance of paper. This index is separate from brightness and whiteness indices.In the paper industry, one-dimensional scales are widely used for determining optical properties of paper and paperboard. Whiteness, tint, brightness, yellowness, and opacity are the most common optical properties of paper and paperboard. Most of the papers have a blue cast generated by addition of OBA or blue dyes. This blue cast is given because of the human perception that bluer is whiter, up to a certain limit. To quantify this effect, it is necessary to determine how much blue cast paper and paperboard have. As the printing industry follows the ISO 3664 Standard for viewing, which has a D50 light source, this also plays a very important role in showing a blue cast. Color perception is based on light source and light reflected from an object. The ultraviolet (UV) component in D50 interacts with OBA to provide a reflection in the blue region of the visible spectrum. Use of a UV blocking filter results in measurements without the effect of emission in the blue region. This difference is used in determining the OBA effect in the visible range of the paper. This equation is known as the Shendye-Fleming OBA Index.

Journal articles
Magazine articles
Open Access
Three-dimensional visualization and characterization of paper machine felts and their relationship to their properties and dewatering performance, TAPPI Journal July 2021

ABSTRACT: Polymeric felts are commonly used in the papermaking process on the paper machine wet end, in the press section, and in the dryer section. They provide an important function during paper manufacturing, including as a carrier or support; as a filter media assisting with water removal on the paper machine; in retention of fibers, fines, and fillers; and in some applications, such as tissue and towel, to impart key structural features to the web. These felts can have highly interwoven complex internal structures comprised of machine direction and cross-machine direction yarns of varying sizes and chemical compositions. Here, we present a non-intrusive three-dimensional (3D) image visualization method using advanced X-ray computed tomography (XRCT). This method was used to characterize the complex 3D felt structure and determine the water removal characteristics of some commonly used paper machine felts. The structural features analyzed include porosity; specific pore-yarn interfacial surface area; 3D pore size distribution; 3D fiber or yarn-size distribution; and their variations through the thickness direction. The top, middle, and bottom layers of the felt have very different structures to assist with water removal and impart paper properties. The size distribution of the yarns, as well as the pores in the different layers of the felt, are also inherently different. These structural features were non-intrusively quantified. In addition, variation in the structural characteristics through the thickness of the felts and its potential role in papermaking is explored. In addition to the 3D structural characteristics, permeability characteristics and water removal characteristics, including rewetting of select felt samples, have also been experimentally determined. It is interesting to observe the relationship between key structural features and permeability and water removal characteristics. These relationships can provide additional insights into press felt design, as well as ways to improve product properties and the dewatering efficiency and productivity of the paper machine.

Journal articles
Magazine articles
Open Access
Techno-economic analysis of hydrothermal carbonization of pulp mill biosludge, TAPPI Journal March 2023

ABSTRACT: For many mills, the biosludge from wastewater treatment is difficult to recycle or dispose of. This makes it a challenging side stream and an important issue for chemical pulping. It often ends up being burned in the recovery or biomass boiler, although the moisture and non-process element (NPE) contents make it a problematic fuel. Biosludge has proven resistant to attempts to reduce its moisture. When incinerated in the biomass boiler, the heat from dry matter combustion is often insufficient to yield positive net heat. Mixing the sludge with black liquor in the evaporator plant for incineration in the recovery boiler is more energy efficient, but is still an additional load on the evaporator plant, as well as introducing NPEs to the liquor. In this study, treating the biosludge by hydrother-mal carbonization (HTC), a mild thermochemical conversion technology, is investigated. The HTC process has some notable advantages for biosludge treatment; taking place in water, it is well suited for sludge, and the hydrochar product is much easier to dewater than untreated sludge. In this study, two HTC plant designs are simulated using IPSEpro process simulation software, followed by economic analysis. Low temperature levels are used to minimize investment costs and steam consumption. The results show that if the sludge is incinerated in a biomass boiler, payback periods could be short at likely electricity prices. The HTC treatment before mixing the sludge with black liquor in the evaporator plant is profitable only if the freed evaporator capacity can be used to increase the firing liquor dry solids content.

Journal articles
Magazine articles
Open Access
Print quality of flexographic printed paperboard related to coating composition and structure, TAPPI Journal January 2018

Print quality of flexographic printed paperboard related to coating composition and structure, TAPPI Journal January 2018

Journal articles
Reinforcing folding boxboard ply stock with refined pulp and its effect on dewatering potential, TAPPI Journal February 2025

ABSTRACT: The folding boxboard (FBB) filler ply typically contains a significant amount of mechanical pulp such as bleached thermomechanical pulp (BTMP), bleached chemi-thermomechanical pulp (BCTMP), and chemi-thermomechanical pulp (CTMP), etc. It is usually reinforced with either refined broke from the same paper machine line and converting process or by utilizing traditional bleached kraft pulp (BKP). In response to the drive for improved/increased ply bond (to avoid undesired delamination), increased bulk, reduced basis weight, and minimized energy consumption, papermakers have experimented with various options and strategies. In between the common approaches, choices have been made between reducing the refining of the mechanical pulp, increasing the broke refining (more frequently practiced on the production scale), or increasing the BKP refining (a potentially superior choice). This study focused on a simplified approach to assess the impact of three reinforcement pulps with different refining levels on the dewatering of the filler ply. The reinforcement pulp was added to the core stock for the FBB filler ply — a mechanical pulp, BCTMP, with a drainability of 25 °SR. The proportions of the reinforcement pulp, hardwood bleached kraft pulp (HWBKP), were 20% of 30-35 °SR, 10% of HWBKP 50-55 °SR, and 5% of HWBKP 70-75 °SR. The intention behind using varying percentages of reinforcement pulp was to attain a controlled internal bond while enhancing bulk through increased mechanical pulp content. The dewatering potential of the stock mixtures was assessed at three vacuum levels — 4, 10, and 25 kPa — that can be found in progressive stages within production- scale forming sections. Our goal was to find an optimal reinforcement strategy for filler ply that would minimize the use of the reinforcement pulp, give better strength, retain bulk, and lower basis weight. The success of this strategy was verified with an actual FBB machine.

Journal articles
Open Access
Pilot-made, highly extensible paper for dry 3D forming, TAPPI Journal May 2025

Cellulose fiber-based packaging materials must perform well in demanding three dimensional (3D) forming process conditions. On the other hand, the development of manufacturing concepts is required for improved competitiveness of bio-based materials. This study covers some key factors that influence the extensibility of cellulose fiber-based structures and presents a pilot-scale development study of a 3D formable material concept. Bleached softwood kraft (BSK) pulp from a Nordic pulp mill was used in the pilot trials. Cellulose-based webs were formed using water-laid and foam-laid web forming using a pilot paper machine. For the water-laid forming, the BSK pulp was refined by applying a high consistency (HC) phase at over 40% consistency, followed by a low consistency (LC) refining at 4% consistency. The BSK pulp was refined for the foam-laid forming by only applying lowconsistency refining. In the foam-laid web forming, anionic sodium dodecyl sulfate (SDS), two foamable latexes, and polyvinyl alcohol (PVA) were used as foaming agents. The pilot rolls were dried at a separate steam cylinder dryer pilot and compacted in-plane in the machine direction (MD) at a separate pilot machine. Tensile properties of the treated paper webs were measured and evaluated with respect to achieved web shrinkage. The same dimensional contraction brought by shrinkage was almost strained out in tensile testing. The results indicated that the shrinkage that occurred by drying and in-plane compaction depended on the pulp furnish. The water-laid material achieved about 30% elongation, whereas the foam-laid material achieved significantly above 50% elongation. The 3D forming performance of the dry materials was tested using fixed and sliding blank methods. The dry paper sheets performed well enough in 3D forming for application to many consumer package applications according to their extensibility.

Journal articles
Magazine articles
Open Access
Multifunctional barrier coating systems created by multilayer curtain coating, TAPPI Journal November 2020

ABSTRACT: Functional coatings are applied to paper and paperboard substrates to provide resistance, or a barrier, against media such as oil and grease (OGR), water, water vapor as measured by moisture vapor transmission rate (MVTR), and oxygen, for applications such as food packaging, food service, and other non-food packaging. Typical functional barrier coatings can be created by applying a solid coating or extruded film, a solvent based-coating, or a water-based coating to the paper substrate using various means of coating applicators.This paper focuses on water-based barrier coatings (WBBC) for OGR, water, MVTR, and oxygen barriers. The main goal was to create coated systems that can achieve more than one barrier property using multilayer curtain coating (MLCC). Curtain coating has emerged as the premier low-impact application me thod for coated paper and paperboard. This paper provides examples using MLCC to create coating structures that provide multiple barrier properties in a single coating step. Barrier polymer systems studied include styrene butadiene, styrene acrylate, vinyl acrylic, and natural materials, as well as proprietary additives where required to give desired performance. The paper also shows how the specific coating layers can be optimized to produce the desired property profile, without concern for blocking, as the addition of a non-blocking top layer can be applied in the MLCC structure as well. Experiments on base sheet types also shows the importance of applying the multilayer structure on a pre-coated surface in order to improve coating thickness consistency and potentially allow for the reduction of more expensive layer components.