Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Modeling and parameter optimization of the papermaking processes by using regression tree model and full factorial design, TAPPI Journal February 2021
ABSTRACT: One of the major challenges in the pulp and paper industry is taking advantage of the large amount of data generated through its processes in order to develop models for optimization purposes, mainly in the papermaking, where the current practice for solving optimization problems is the error-proofing method. First, the multiple linear regression technique is applied to find the variables that affect the output pressure controlling the gap of the paper sheet between the rod sizer and spooner sections, which is the main cause of paper breaks. As a measure to determine the predictive capacity of the adjusted model, the coefficient of determination (R2) and s values for the output pressure were considered, while the variance inflation factor was used to identify and eliminate the collinearity problem. Considering the same amount of data available by using machine learning, the regression tree was the best model based on the root mean square error (RSME) and R2. To find the optimal operating conditions using the regression tree model as source of output pressure measurement, a full factorial design was developed. Using an alpha level of 5%, findings show that linear regression and the regression tree model found only four independent variables as significant; thus, the regression tree model demonstrated a clear advantage over the linear regression model alone by improving operating conditions and demonstrating less variability in output pressure. Furthermore, in the present work, it was demonstrated that the adjusted models with good predictive capacity can be used to design noninvasive experiments and obtain.
Journal articles
Magazine articles
Black liquor evaporator upgrades— life cycle cost analysis, TAPPI Journal March 2021
ABSTRACT: Black liquor evaporation is generally the most energy intensive unit operation in a pulp and paper manufacturing facility. The black liquor evaporators can represent a third or more of the total mill steam usage, followed by the paper machine and digester. Evaporator steam economy is defined as the unit mass of steam required to evaporate a unit mass of water from black liquor (i.e., lb/lb or kg/kg.) The economy is determined by the number of effects in an evaporator train and the system configuration. Older systems use four to six effects, most of which are the long tube vertical rising film type. Newer systems may be designed with seven or even eight effects using falling film and forced circulation crystallization technology for high product solids. The median age of all North American evaporator systems is 44 years. Roughly 25% of the current North American operating systems are 54 years or older. Older systems require more periodic maintenance and have a higher risk of unplanned downtime. Also, older systems have chronic issues with persistent liquor and vapor leaks, shell wall thinning, corrosion, and plugged tubes. Often these issues worsen to the point of requiring rebuild or replacement. When considering the age, technology, and lower efficiency of older systems, a major rebuild or new system may be warranted. The intent of this paper is to review the current state of black liquor evaporator systems in North America and present a basic method for determining whether a major rebuild or new installation is warrant-ed using total life cycle cost analysis (LCCA).
Journal articles
Magazine articles
Determining operating variables that impact internal fiber bonding using Wedge statistical analysis methods, TAPPI Journal November 2021
ABSTRACT: In this study, Wedge statistical analysis tools were used to collect, collate, clean up, plot, and analyze several years of operational data from a commercial paper machine. The z-direction tensile (ZDT) and Scott Bond tests were chosen as representative of fiber bond strength. After analyzing thousands of operational parameters, the ones with the most significant impact upon ZDT involved starch application method, starch penetration, and the amount of starch applied. Scott bond was found to be significantly impacted by formation and refining. Final calendering of the paper web has also shown an impact on internal fiber bonding.
Journal articles
Magazine articles
Temperature profile measurement applications of moving webs and roll structures with intelligent roll embedded sensor technology, TAPPI Journal November 2021
ABSTRACT: An intelligent roll for sheet and roll cover temperature profiles is a mechatronic system consisting of a roll in a web handling machine that is also used as a transducer for sensing cross-machine direction (CD) profiles. The embedded temperature sensor strips are mounted under or inside the roll cover, covering the full width of the roll’s cross-dimensional length. The sensor system offers new opportunities for online temperature measurement through exceptional sensitivity and resolution, without adding external measurement devices. The measurement is contacting, making it free from various disturbances affecting non-contacting temperature measurements, and it can show the roll cover’s internal temperatures. This helps create applications that have been impossible with traditional technology, with opportunities for process control and condition monitoring. An application used for process analysis services without adding a roll cover is made with “iRoll Portable Temperature” by mounting the sensor on the shell in a helical arrangement with special taping. The iRoll Temperature sensors are used for various purposes, depending on the application. The two main targets are the online temperature profile measurement of the moving web and the monitoring of the roll covers’ internal temperatures. The online sheet temperature profile has its main utilization in optimizing moisture profiles and drying processes. This enables the removal of speed and runnability bottlenecks by detecting inadequate drying capacity across the sheet CD width, the monitoring condition of the drying equipment, the optimization of drying energy consumption, the prevention of unnecessary over-drying, the optimization of the float drying of coating colors, and the detection of reasons for moisture profile errors. This paper describes this novel technology and its use cases in the paper, board, and tissue industry, but the application can be extended to pulp drying and industries outside pulp and paper, such as the converting and manufacture of plastic films.
Journal articles
Magazine articles
Development of paper quality parameter measurement in China, TAPPI Journal May 2022
ABSTRACT: Paper quality parameters are important indicators of paper production, such as paper moisture, basis weight, ash content, strength, and so on. This study focuses on the online measurement methods and development of paper basis weight, moisture, and ash measuring. First, the measurable paper parameters and quality control system products in China are analyzed. Then, the basis weight measurement methods, accuracy, and development are given in the range of 10~1000 g/m2. Third, the distinction between infrared and microwave methods for moisture measurement is discussed. Finally, the ash measurement is introduced. Production and consumption of tissue paper in China have continually increased during the past decade. Near-infrared light technology is mature for the measurement of paper parameters in the range of 10~200 g/m2 basis weight. However, the near-infrared online measurement of tissue paper is not widely used, and few tissue paper lines are equipped with this type of quality control system in China. Therefore, technology for near-infrared measurement of basis weight has a great potential market in the field of tissue paper production. This article analyzes the future development trend of near-infrared light in tissue paper basis weight measurement and summarizes the difficulties in near-infrared light measurement of tissue paper basis weight.
Journal articles
Magazine articles
Review of coating cracking and barrier integrity on paperboard substrates, TAPPI Journal November 2022
ABSTRACT: Barrier packaging formats are major growth areas for the pulp and paper industry. It is technically challenging to maintain barrier properties during converting and end-use applications. Improved manufacturing capabilities and coating formulation knowledge will help maintain barrier integrity and enable growth of barrier products in challenging applications. These improvements will accelerate product development and commercialization, and allow faster response to product performance issues such as cracking. The literature on coating cracking provides knowledge mostly on the effects of coating formulations and to a lesser extent on substrate effects. Despite a large number of publications dedicated to coating failures, the approach to improve coating cracking remains empirical, and the transferability between studies and to real life applications has not been well established. Model development that successfully predicts commercial performance is in its infancy. However, some of these simplified models do a fairly good job predicting experimental data. The current work reviews the state of understanding as regards coating and barrier cracking and highlights the need for more research on cracking and barrier integrity.
Journal articles
Magazine articles
Modeling the influence of rheology on smooth rod coating systems, TAPPI Journal November 2022
ABSTRACT: Rod coating methods are of interest for the application of barrier coatings, especially at off-line facilities that may run at moderate speeds and narrow web widths. At lower line speeds and lower coating solids, it is difficult to achieve good coat weight control because of poor loading of the rod. While there is extensive literature available about blade and roll coating, there seems to be less reported on the rod loading of smooth rods to obtain various coat weights. Much of the work is around metering rods working on applicator rolls at high speeds that are associated with the metered size press, with a focus on ribbing instabilities. This work employs a simplified model, neglecting some complex features of rubber deformation and film split, to estimate the influence of the process parameters such as speed, rod diameter, viscosity, and rod loading on the coat weight obtained. As found in practice, at low speed and low viscosities, the coat weight-load curve is steep, leading to poor control of the coat weight and coat weight uniformity. If the viscosity is increased, the curve is modified, and control is possible with rod loading in a normal range. For shear thinning fluids described by the Carreau model, the power law index and other parameters need to be in the correct range to obtain the desired effect. Modeling predictions show a steeper dependence of coat weight with rod pressure when compared to pilot coater data. This may be caused by missing details in the mechanical loading of the rod related to tube pressure or from neglecting the impact of filter cake formation of the applied coating in the model.
Journal articles
Magazine articles
Novel test method for measuring defects in barrier coatings, TAPPI Journal November 2022
ABSTRACT: In the last several years, activity to develop water-based barrier coatings (WBBCs) that meet challenging packaging performance requirements has increased dramatically. Cellulose-based packaging solutions can provide a more sustainable packaging option for replacing single-use plastic-based options like extrusion-based and laminated materials. An advantage of WBBCs is the opportunity to reduce the coating thickness applied, as long as the barrier requirements can be met. A challenge that must be overcome is the ability to maintain a defect and pin-hole-free coating layer after coating and drying to retain the barrier performance. Many formulation and coating parameters can affect the barrier coating layer quality; however, methods for detecting more subtle differences in these types of studies are not widely available. Work was carried out to develop a quantitative technique for detecting and measuring the quantity and size of defects in the barrier coating layer. A test method has been developed using a combination of dyed oil and image analysis to be able to characterize the imperfections in the coating surface. The use of dyed oil serves two purposes. First, it better simulates the types of materials, in this case, oils and grease, for which the barrier coating is expected to hold out. Second, it also provides contrast between the coating and failure points for testing. An image analysis technique is employed to characterize the number and size of the imperfections. For the former, it reduces the testing time required if a quality control or laboratory technician counts the dots. For the latter, it assists with judgment on the source of the root cause of the imperfection, such as base sheet defects, coating dispersion issues, or perhaps micro-blisters in the coating, as some examples.To show the benefit of this technique, several pilot coating studies were designed to see if the new technique could be utilized to detect differences in WBBC performance. Both process and chemical variables were evaluated. With refinement, it is believed this technique can be utilized in development work, as well as for a potential quality control technique for manufacturing of coated paper and paperboard products.
Journal articles
Magazine articles
Convolutional neural networks enhance pyrolysis gas chromatography mass spectrometry identification of coated papers, TAPPI Journal August 2024
ABSTRACT: In the evolving paper industry, accurate identification of coated paper components is essential for sustainability and recycling efforts. This study employed pyrolysis-gas chromatography mass spectrometry (Py-GCMS) to examine six types of coated paper. A key finding was the minimal interference of the paper substrate with the pyrolysis products of the coatings, ensuring reliable analysis. A one-dimensional convolutional neural network (1D-CNN) was employed to process the extracted ion chromatograms directly, simplifying the workflow and achieving a predictive accuracy of 95.2% in identifying different coating compositions. Additionally, the study high-lighted the importance of selecting an optimal pyrolysis temperature for effective feature extraction in machine learning models. Specific markers for coated papers, including polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polybutylene succinate (PBS), polylactic acid (PLA), and waterborne polyacrylates (WP), were identified. This research demonstrates a novel approach to coated paper identification by combining Py-GCMS with machine learning, offering a foundation for further studies in product quality and environmental impact.
Journal articles
Magazine articles
Next generation dry strength additives: Leveraging on-site synthesis to develop high performance glyoxalated polyacrylamides, TAPPI Journal January 2024
ABSTRACT: Although glyoxalated polyacrylamides (gPAMs) have been described since the 1950s, the freedom to design new materials based on this chemistry has been limited by practical concerns; namely, a balance between solution concentration and material characteristics must be met to make the economics of gPAM strength additives work for the paper industry. For traditional “delivered” gPAMs, only a very narrow range of polyacrylamide molecular weights and compositions could be considered for glyoxalation. However, the development and successful implementation of automated reactor equipment that allows for the synthesis of gPAMs from glyoxal and polyacrylamide copolymers at the mill, known as “on-site” glyoxalation, obviates the shipping and stability concerns that have traditionally held back gPAM development. As such, on-site generators represent a platform that enables the glyoxalation of materials that would otherwise not have been suitable for use in a traditionally delivered gPAM product. These on-site generators therefore open new avenues for polymer design to allow for the creation of the next generation of strength additives. By leveraging the synthetic freedom of the on-site generators, a suite of high performance gPAMs has been designed, yielding materials that provide both exceptional strength and drainage performance in poor quality furnishes.