Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 341–350 of 373 results (Duration : 0.013 seconds)
Journal articles
Magazine articles
Open Access
Effects of carboxymethyl starch as a papermaking additive, TAPPI Journal February 2024

ABSTRACT: Carboxymethyl starch (CMS) is a bio-based, anionic polymer that has potential as part of a dry-strength additive program for papermaking. Due to its negative charge, its effects can be expected to depend on its interactions with various cationic agents. In this work, the effects of CMS were observed following its sequential addition after one of three selected cationic strength agents at different dosage levels. In selected tests, the furnish was pretreated at the 1% level by a dispersant, sodium polyacrylate, which might represent a high level of anionic contaminants in a paper mill system. Laboratory tests were conducted to show the effects on dewatering, fine-particle retention, and flocculation. These tests were supplemented with measurements of charge demand, zeta potential, and handsheet properties. Sequential addition of cationic glyoxylated acrylamide copolymers (gPAM) and CMS were found to strongly promote dewatering. Two gPAM products and a poly(vinylamine) product in sequential addition with CMS were very effective for promoting fine-particle retention. These same sequential treatments of the stock contributed to moderate fiber flocculation, though severe flocculation was caused by further treatment of the furnish with colloidal silica. Handsheet strength results were mixed. In the default recycled copy paper furnish, the average breaking length for the sheets made with cationic additives followed by CMS was not greatly different from the blank condition. Superior strength resulted when the default furnish was treated with a dispersant alone. When the dispersant-contaminated furnish was treated with the same combinations of cationic additives and CMS, the strength returned to the baseline achieved in the absence of the dispersant. The results were discussed in terms of the charged character of the different additives and their interactions not only with the fiber surfaces but also with each other.

Journal articles
Magazine articles
Open Access
Effects of hydrodynamic shear during formation of paper sheets with the addition of nanofibrillated cellulose, cationic starch, and cationic retention aid, TAPPI Journal September 2024

ABSTRACT: Laboratory tests were conducted to evaluate effects of hydrodynamic shear levels on papermaking process variables and paper handsheet properties. The furnish was from 100% recycled copy paper, to which was added nanofibrillated cellulose (NFC) at the 5% level following its optional pretreatment with cationic starch. A cationic copolymer of acrylamide (cPAM) was used as the retention aid. Different levels of hydrodynamic shear were applied both after mixing the NFC with the cationic starch (pre-shearing) or after all the furnish components had been combined (final shearing). The presence or absence of pre-shearing was found to have little effect on the measured outcomes. By contrast, increasing final shear hurt filler retention and made the resulting paper more uniform. However, the final shear level did not have a significant effect on the tensile strength of the resulting handsheets. Medium-charge density cationic starch, used in pretreating the NFC, consistently gave greater strength in comparison to a high-charge cationic starch. The significance of these findings is that though the relatively high hydrodynamic shear levels associated with modern paper machines can have some beneficial effects, they do not necessarily overcome all challenges associated with wet-end addition of nanocellulose in combination with other additives.

Journal articles
Magazine articles
Open Access
Web lateral instability caused by nonuniform paper properties, TAPPI Journal January 2022

ABSTRACT: Lateral or cross-machine direction (CD) web movement in printing or converting can cause problems such as misregistration, wrinkles, breaks, and folder issues. The role of paper properties in this problem was studied by measuring lateral web positions on commercial printing presses and on a pilot-scale roll testing facility (RTF). The findings clearly showed that CD profiles of machine direction (MD) tension were a key factor in web stability. Uneven tension profiles cause the web to move towards the low-tension side. Although extremely nonuniform tension profiles are visible as bagginess, more often, tension profiles must be detected by precision devices such as the RTF. Once detected, the profiles may be analyzed to determine the cause of web offset and weaving problems.Causes of tension profiles can originate from nonuniform paper properties. For example, by means of case studies, we show that an uneven moisture profile entering the dryer section can lead to a nonuniform tension profile and lateral web movement. Time-varying changes in basis weight or stiffness may also lead to oscillations in the web’s lateral position. These problems were corrected by identifying the root cause and making appropriate changes. In addition, we developed a mathematical model of lateral stability that explains the underlying mechanisms and can be used to understand and correct causes of lateral web instability.

Journal articles
Magazine articles
Open Access
Effect of pressure and time on water absorption of coated paperboard based on a modified Cobb test method, TAPPI Journal April 2024

ABSTRACT: This manuscript presents the study of water absorption by paperboard subjected to water at high hydrostatic pressure based on a modified Cobb tester. The new tester is based on TAPPI Standard Test Method T 441; however, the water column can reach up to 550 mm. The evaluation consisted of measurements of water absorption for coated and uncoated paperboard at different exposure times from 5 s to 45 s and water column heights from 10 mm to 500 mm (corresponding to hydrostatic pressures 98 Pa and 4.9 kPa, respectively). The coatings were formulated as a combination of styrene acrylate (SA; two binder levels) and two types of ground calcium carbonates (differing particle sizes) to form the two pre-coating structures: open and closed. The coating weight was 6 g/m2 applied on 210 g/m2 solid bleached board (SBB). In addition, 210 g/m2 uncoated boards were studied. Characterization of the coatings was performed with scanning electron microscopy (SEM), mercury intrusion, and roughness. It was found that the new device properly mimics the conditions of the current Cobb tester. The characterization of the coating also confirmed the presence of more open/larger pores of open coatings, confirming the desired coating structure. The absorption of boards was mainly driven by exposure pressure by comparing with exposure time. This was already evident after shorter periods of exposure time at 5 s and also 15 s exposure time. Paperboards with open coatings showed slightly higher absorption than other boards.

Journal articles
Magazine articles
Open Access
Control of continuous digester kappa number using generalized model predictive control, TAPPI Journal September 2024

ABSTRACT: Kappa number variability at the digester impacts pulp yield, physical strength properties, and lignin content for downstream delignification processing. Regulation of the digester kappa number is therefore of great importance to the pulp and paper industry. In this work, an industrial application of model-based predictive control (MPC), based on generalized prediction control, was developed for kappa number feedback control and applied to a dual vessel continuous digester located in Western Canada. The problem was complicated by the need to apply heat at multiple locations in the cook. In this study, the problem was reduced from a multiple to a single input system by identifying three potential single variable permutations for temperature adjustment. In the end, a coordinated approach to the heaters was adopted. The process was perturbed and modeled as a simple first order plus dead time model and implemented in generalized predictive control (GPC). The GPC was then configured to be equivalent to Dahlin’s controller, which reduced tuning parameterization to a single closed loop time constant. The controller was then tuned based on robustness towards a worst-case dead time mismatch of 50%. The control held the mean value of the kappa number close to the setpoint, and a 40% reduction in the kappa number’s standard deviation was achieved. Different kappa number trials were run, and the average fiberline yield for each period was evaluated. Trial results suggested yield gains of 0.3%•0.5% were possible for each 1 kappa number target increase.

Journal articles
Magazine articles
Open Access
Research on flame-retardant paper prepared by the method of in-pulp addition of ammonium polyphosphate, TAPPI Journal May 2023

ABSTRACT: At present, the production of flame-retardant paper usually uses the impregnation method of phosphorus-nitrogen flame retardants in paper. There are few reports on the application of an in-pulp addition method. In this paper, the solubility of ammonium polyphosphate (APP) and its effect on flame-retardant paper were investigated for use in an in-pulp addition method. It was found that APP particles were square, with an average particle size of 21.88 µm. The particle size decreased significantly after immersion in water at 25°C for 24 h. Furthermore, most of the APPs were dissolved after immersion in water at 90°C for 0.5 h, and the residuals agglomerated and their shape turned into an amorphous form. The APP possessed strong electronegativity and could partially ionize in water. The solubility of APP was 0.18 g/100 mL water at 25°C and increased quickly when the temperature was higher than 30°C. Therefore, APP should be added to the pulp at temperatures below 30°C. The tensile strength of the paper initially increased with the addition of APP, and it reached the maximum value when the APP content was 10% and then gradually decreased. The limiting oxygen index (LOI) value of the paper was 28.7% when the added amount of APP was 30% and cationic polyacrylamide (CPAM) was 0.08%, reaching the flame-retardant level.

Journal articles
Magazine articles
Open Access
A case study review of wood ash land application programs in North America, TAPPI Journal February 2021

ABSTRACT: Several regulatory agencies and universities have published guidelines addressing the use of wood ash as liming material for agricultural land and as a soil amendment and fertilizer. This paper summarizes the experiences collected from several forest products facility-sponsored agricultural application programs across North America. These case studies are characterized in terms of the quality of the wood ash involved in the agricultural application, approval requirements, recommended management practices, agricultural benefits of wood ash, and challenges confronted by ash generators and farmers during storage, handling, and land application of wood ash.Reported benefits associated with land-applying wood ash include increasing the pH of acidic soils, improving soil quality, and increasing crop yields. Farmers apply wood ash on their land because in addition to its liming value, it has been shown to effectively fertilize the soil while maintaining soil pH at a level that is optimal for plant growth. Given the content of calcium, potassium, and magnesium that wood ash supplies to the soil, wood ash also improves soil tilth. Wood ash has also proven to be a cost-effective alternative to agricultural lime, especially in rural areas where access to commercial agricultural lime is limited. Some of the challenges identified in the review of case studies include lengthy application approvals in some jurisdictions; weather-related issues associated with delivery, storage, and application of wood ash; maintaining consistent ash quality; inaccurate assessment of required ash testing; potential increased equipment maintenance; and misconceptions on the part of some farmers and government agencies regarding the effect and efficacy of wood ash on soil quality and crop productivity.

Journal articles
Magazine articles
Open Access
Flow characteristics of drag-reducing natural bamboo fiber suspensions with minimal environmental load, TAPPI Journal September 2019

ABSTRACT: The reduction of pipe friction loss by adding drag-reducing agents has attracted attention as an aid to energy conservation. Drag-reducing agents induce drag reduction (DR) effects and should have a minimal environmental load, with natural resource-saving potential. This study demonstrates bamboo fiber as a drag-reducing agent that saves natural resources and has a low environmental load. Using pressure drop measurements, we report DR with suspensions of bamboo fibers with the average diameter of 13.3 µm and aspect ratio of 98.7. The maximum DR obtained in this experiment is 43% at the concentration of 4000 ppm and pipe diameter of 30 mm; DR is affected by the Reynolds number, suspension concentration, and pipe diameter. In addition, the bamboo fibers can be easily removed from the suspensions by filtration. We found that low-environmental-load bamboo fiber has DR effects like those of other fibers; its effects are greater than those of conventional synthetic fibers and wood pulp. Furthermore, it is resistant to mechanical degradation, recoverable, and recyclable. Therefore, DR effects can be selectively obtained by adding the fibers only when DR is needed; the fibers can then be collected when DR is no longer necessary. This method might greatly expand the application range of DR agents. The results demonstrate the usefulness of bamboo fibers as DR additives.

Journal articles
Magazine articles
Open Access
Lignin-based resins for kraft paper applications, TAPPI Journal November 2019

ABSTRACT: We investigated miscanthus (MS) and willow (W) lignin-furfural based resins as potential reinforce-ment agents on softwood and hardwood kraft paper. These resins might be sustainable alternatives to the commercial phenolformaldehyde (PF) resins. Phenol is a petrochemical product and formaldehyde has been classified as a carcinogen by the U.S. Environmental Protection Agency. The lignin used in this study was derived from hot water extraction (160ºC, 2 h) of MS and W biomass, and may be considered sulfur-free. These biorefinery lignins were characterized for their chemical composition and inherent properties via wet chemistry and instrumental techniques. The resin blends (MS-resin and W-resin) were characterized for their molecular weight, thermal behavior, and mechanical properties. Mechanical properties were measured by the resin’s ability to reinforce softwood and hard-wood kraft papers. The effect of adding hexamethylenetetramine (HMTA), a curing agent, to the resin was also examined. Mixtures of PF and lignin-based resins were investigated to further explore ways to reduce use of non-renewables, phenol, and carcinogenic formaldehyde. The results show that lignin-based resins have the potential to replace PF resins in kraft paper applications. For softwood paper, the highest strength was achieved using W-resin, without HMTA (2.5 times greater than PF with HMTA). For hardwood paper, MS-resin with HMTA gave the highest strength (2.3 times higher than PF with HMTA). The lignin-based resins, without HMTA, also yielded mechanical properties comparable to PF with HMTA.

Journal articles
Magazine articles
Open Access
Multifunctional barrier coating systems created by multilayer curtain coating, TAPPI Journal November 2023

ABSTRACT: Functional coatings are applied to paper and paperboard substrates to provide resistance, or a barrier, against media such as oil and grease, water, water vapor, and oxygen, for applications such as food packaging, food service, and other non-food packaging. Today, there is increasing interest in developing recyclable and more sustainable approaches for producing these types of packages. This paper focuses on water-based barrier coatings (WBBC) for oil and grease resistance (OGR), water, moisture vapor transmission rate (MVTR), and oxygen barrier performance. The main goal is to create coated systems that can achieve more than one barrier property using multilayer curtain coating (MLCC) in a single application step. One advantage is in optimizing coating material cost with the use of functional chemistry in confined layers where performance is balanced within the coating layered structure. This allows simultaneous application of layers of different polymer types in one step to achieve the appropriate performance needs for a given barrier application. This paper provides working examples of using MLCC to create coating structures with multiple barrier properties in a single application pass. Barrier polymers studied include styrene butadiene, styrene acrylate, starch-containing emulsions, and polyvinyl alcohol. The paper also shows the effect of increasing the pigment volume concentration with platy clay or fine ground calcium carbonate on MVTR and OGR barrier properties.