Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
A guide to eliminating baggy webs, TAPPI Journal June 2021
ABSTRACT: Slack or baggy webs can cause misregistration, wrinkles, and breaks in printing and converting operations. Bagginess appears as non-uniform tautness in the cross direction (CD) of a paper web. The underlying cause is uneven CD tension profiles, for which there are few remedies once the paper is made. Precision measurements of CD tension profiles combined with trials on commercial paper machines have shown that uniform CD distribution of moisture, basis weight, and caliper profiles at the reel are key to avoiding bagginess. However, the most important but infrequently measured factor is the CD moisture profile entering the dryer section. Wetter areas entering the dryers are permanently elongated more than dry areas, leading to greater slackness in the finished paper. In storage, wound-in tension can amplify baggy streaks in paper near the surface of a roll and adjacent to the core. Unwrapped or poorly wrapped rolls exposed to low humidity environments may have baggy centers caused by moisture loss from the roll edges.All of the factors that impact bagginess have been incorporated in a mathematical model that was used to interpret the observations from commercial trials and can be used as a guide to solve future problems.
Journal articles
Magazine articles
Understanding extensibility of paper: Role of fiber elongation and fiber bonding, TAPPI Journal March 2020
ABSTRACT: The tensile tests of individual bleached softwood kraft pulp fibers and sheets, as well as the micro-mechanical simulation of the fiber network, suggest that only a part of the elongation potential of individual fibers is utilized in the elongation of the sheet. The stress-strain curves of two actual individual pulp fibers and one mimicked classic stress-strain behavior of fiber were applied to a micromechanical simulation of random fiber networks. Both the experimental results and the micromechanical simulations indicated that fiber bonding has an important role not only in determining the strength but also the elongation of fiber networks. Additionally, the results indicate that the shape of the stress-strain curve of individual pulp fibers may have a significant influence on the shape of the stress-strain curve of a paper sheet. A large increase in elongation and strength of paper can be reached only by strengthening fiber-fiber bonding, as demonstrated by the experimental handsheets containing starch and cellulose microfibrils and by the micromechanical simulations. The key conclusion related to this investigation was that simulated uniform inter-fiber bond strength does not influence the shape of the stress-strain curve of the fiber network until the bonds fail, whereas the number of bonds has an influence on the activation of the fiber network and on the shape of the whole stress-strain curve.
Journal articles
Magazine articles
A novel unit operation to remove hydrophobic contaminants, TAPPI Journal April 2020
ABSTRACT: For mills making paper with recovered fiber, removal of hydrophobic contaminants is essential for trouble-free operation of paper machines. Significant cost savings on paper machine operation can be achieved by reducing deposits, which results in better quality, reduced downtime, increased fiber yield, and reduced energy consumption. Bubble nucleation separation (BNS) is a relatively new process for removing hydrophobic particles. When vacuum is applied to a slurry, dissolved gas bubbles nucleate on hydrophobic particles and drag them to the surface for easy removal. We constructed a 16-L batch unit to evaluate the effect of operating parameters on removal of hydrophobic particles, using statistical design of experiments. These results were used to guide our design of a 16-L continuous unit. We tested this unit on laboratory and mill samples. The removal of 60%•80% of hydrophobic particles was achieved with a low reject rate of < 2%.Following on this success, we built a 200-L pilot unit and tested it in our pilot plant. With promising results there, we installed the pilot unit at a commercial paper recycling mill. Over the course of several mill trials, we showed that it was possible to remove a considerable amount of suspended solids from paper machine white water with less than 2% rejects. Unfortunately, due to the unit only treating 50 L/min and the mill flow being 12000 L/min, we were not able treat a sufficient portion of the white water to know whether a large-scale implementation of BNS would improve paper machine runnability.
Journal articles
Magazine articles
Quantification of the degree of preference for different tissue products based on a hand-felt tissue test panel, TAPPI Journal May 2023
ABSTRACT: In this study, we successfully established a quantification model to determine the preference (PF) for different tissue products based on the results of a hand-felt tissue testing panel. The panel ascertained that products designed with four-ply tissues provided higher total tensile strength (TTS) and hand-felt surface softness (HSS) than did those of the three-ply, two-ply, and single-ply products.When practically tested with a tissue softness analyzer (TSA), the four-ply tissue product had a softness (TSA-HF) advantage; however, in human panel tests, more than half of the participants could not be sure of the hand-felt bulk softness (HBS) of the four-ply tissue product. This was mainly because when using the four-ply tissue, the hand-held test pad gave an overall perception distinctly different from those of the hand-held two- or three-ply products, which also differed from the flattened state of test pieces used in the instrumental softness tests. Users could distinctly feel that a product was safer (better TTS) and more comfortable (higher hand-held surface softness). Thus, the four-ply tissue product was accorded a higher preference.
Journal articles
Magazine articles
In-process detection of fiber cutting in low consistency ref
In-process detection of fiber cutting in low consistency refining based on measurement of forces on refiner bars, TAPPI JOURNAL April 2017
Journal articles
Magazine articles
Photo-catalytic degradation of gaseous pollutants in paper mills of southern China, TAPPI JOURNAL March 2018
Photo-catalytic degradation of gaseous pollutants in paper mills of southern China, TAPPI JOURNAL March 2018
Journal articles
Magazine articles
Use of vent stack temperature as a feedforward variable for dissolver total titratable alkali (TTA) control, TAPPI JOURNAL May 2018
Use of vent stack temperature as a feedforward variable for dissolver total titratable alkali (TTA) control, TAPPI JOURNAL May 2018
Journal articles
Magazine articles
Operational limits of blade coating associated with high aspect ratio pigments: Part I—bench top blade coater, TAPPI Journal February 2019
Operational limits of blade coating associated with high aspect ratio pigments: Part I—bench top blade coater, TAPPI Journal February 2019
Journal articles
Magazine articles
Operational limits of blade coating assocciated with high aspect ratio pigments: PartII—cylindrical laboratory coater, TAPPI Journal February 2019
Operational limits of blade coating assocciated with high aspect ratio pigments: PartII—cylindrical laboratory coater, TAPPI Journal February 2019
Journal articles
Magazine articles
A novel predictive method for filler coflocculation with cellulose microfibrils, TAPPI Journal November 2019
ABSTRACT: Different strategies aimed at reducing the negative impact of fillers on paper strength have been the objective of many studies during the past few decades. Some new strategies have even been patented or commercialized, yet a complete study on the behavior of the filler flocs and their effect on retention, drainage, and formation has not been found in literature. This type of research on fillers is often limited by difficulties in simulating high levels of shear at laboratory scale similar to those at mill scale. To address this challenge, a combination of techniques was used to compare preflocculation (i.e., filler is flocculated before addition to the pulp) with coflocculation strategies (i.e., filler is mixed with a binder and flocculated before addition to the pulp). The effect on filler and fiber flocs size was studied in a pilot flow loop using focal beam reflectance measurement (FBRM) and image analysis. Flocs obtained with cationic polyacrylamide (CPAM) and benonite were shown to have similar shear resistance with both strategies, whereas cationic starch (CS) was clearly more advantageous when coflocculation strategy was used. The effect of flocculation strategy on drainage rate, STFI formation, ash retention, and standard strength properties was measured. Coflocculation of filler with CPAM plus bentonite or CS showed promising results and produced sheets with high strength but had a negative impact on wire dewatering, opening a door for further optimization.