Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Process control conference highlights current advances in co
Process control conference highlights current advances in control systems and instrumentation, TAPPI JOURNAL, June 1991, Vol. 74(6)
Journal articles
Jan bergstrom names tappi's 1991 gunnar nicholson gold medal
Jan bergstrom names tappi's 1991 gunnar nicholson gold medal awardee, TAPPI JOURNAL, March 1991, Vol. 74(3)
Journal articles
Burning mill sludge in a fluidized-bed incinerator and waste-heat-recovery system, TAPPI JOURNAL, March 1991, Vol. 74(3)
Burning mill sludge in a fluidized-bed incinerator and waste-heat-recovery system, TAPPI JOURNAL, March 1991, Vol. 74(3)
Journal articles
Why is press drying/impulse drying delayed?, TAPPI JOURNAL, March 1991, Vol. 74(3)
Why is press drying/impulse drying delayed?, TAPPI JOURNAL, March 1991, Vol. 74(3)
Journal articles
Better chip quality through automated analysis of grab sampl
Better chip quality through automated analysis of grab samples, TAPPI JOURNAL, March 1991, Vol. 74(3)
Journal articles
Using multi-method analysis to identify challenging paper machine deposits and defects, TAPPI Journal March 2025
ABSTRACT: Based on its speed and versatility, Fourier transform infrared (FTIR) spectroscopy is the industry’s common starting point for analysis of a paper machine deposit or defect sample. However, certain contaminants and papermaking process additives cannot be precisely identified solely by infrared spectral interpretation. This lack of specificity could lead to a misinterpretation of the composition of the deposit or defect. A multi-method analysis uses data from two or more analytical techniques, including FTIR spectroscopy, microbiological staining/phase contrast microscopy, pyrolysis-gas chromatography/mass spectrometry (Pyro-GC/MS), and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), to produce a more specific assessment of a sample’s composition. This paper discusses the use of a multi-method analysis in deposit and defect analysis and presents several case studies that demonstrate how this comprehensive approach can often produce an interpretation result of greater conviction and value to the papermaker.
Journal articles
Predictive advisory solutions for chemistry management, control, and optimization, TAPPI Journal March 2025
ABSTRACT: Process runnability and end-product quality in paper and board making are often connected to chemistry. Typically, monitoring of the chemistry status is based on a few laboratory measurements and a limited number of online specific chemistry-related measurements. Therefore, mill personnel do not have real-time transparency of the chemistry related phenomena, which can cause production instability, including deposition, higher chemical consumption, quality issues in the end-product and runnability problems. Machine learning techniques have been used to establish soft sensor models and to detect abnormalities. Furthermore, these soft sensors prove to be most useful when combined with expert-driven interpretation. This study is aimed at utilizing a hybrid solution comprising chemistry and physics models and machine learning models for stabilizing chemistry-related processes in paper and board production. The principal idea is to combine chemistry/physics models and machine learning models in a fashion close to white box modeling. A cornerstone in the approach is to formulate explanations of the findings from the models; that is, to explain in plain text what the findings mean and how operational changes can mitigate the identified risks. The approach has been demonstrated for several different applications, including deposit control in the wet end, both raw water treatment and usage, and wastewater treatment. This approach provides mill personnel with knowledge of identified phenomena and recommendations on how to stabilize chemistry-related processes. Instead of using close to black box machine learning models, a hybrid solution including chemistry/physics models can enhance the performance of artificial intelligence (AI) deployed systems. A successful way of gaining the trust from mill personnel is by creating a plain text explanation of the findings from the hybrid models. The correlation between the likelihood of a phenomena and disturbance and the explanations are derived and validated by application and chemistry and physics experts.
Journal articles
Magazine articles
Wheat straw as an alternative pulp fiber, TAPPI Journal December 2024
Author: Peter W. Hart | TAPPI J. 19(1): 41(2020) - ABSTRACT: The desire to market sustainable packaging materials has led to an interest in the use of various fiber types as a raw material. It has been suggested that the use of annual crops for partial replacement of wood fiber would result in more sustainable products. Several life cycle analyses (LCA) have been performed to evaluate these claims. These LCAs provided conflicting and contradictory results because of the local conditions and the specific pulping processes investigated. Selected LCAs are reviewed and the underlying reasons for these conflicting results are analyzed.
Journal articles
Magazine articles
Review of coating cracking and barrier integrity on paperboard substrates, TAPPI JournalDecember 2024
Authors: Joel C. Panek and Peter W. Hart | TAPPI J. 21(11): 589(2022) - ABSTRACT: Barrier packaging formats are major growth areas for the pulp and paper industry. It is technically challenging to maintain barrier properties during converting and end-use applications. Improved manufacturing capabilities and coating formulation knowledge will help maintain barrier integrity and enable growth of barrier products in challenging applications. These improvements will accelerate product development and commercialization, and allow faster response to product performance issues such as cracking. The literature on coating cracking provides knowledge mostly on the effects of coating formulations and to a lesser extent on substrate effects. Despite a large number of publications dedicated to coating failures, the approach to improve coating cracking remains empirical, and the transferability between studies and to real life applications has not been well established. Model development that successfully predicts commercial performance is in its infancy. However, some of these simplified models do a fairly good job predicting experimental data. The current work reviews the state of understanding as regards coating and barrier cracking and highlights the need for more research on cracking and barrier integrity.