Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 421–430 of 5,349 results (Duration : 0.012 seconds)
Journal articles
Controllable conversion of cellulose nanocrystals to cellulose microspheres: Insight on the effect of parameters during spray drying, TAPPI Journal February 2025

ABSTRACT: Cellulose microspheres, which have mainly been produced via the sol-gel method up until now, exhibit a promising potential for broad applications due to their regular microstructure and renewability. However, some issues with production of cellulose microspheres, such as the recycling of involved organic solvents and the removal of the residual solvents, should be solved. In this study, a cellulose nanocrystals (CNCs) suspension was used to produce cellulose microspheres via spray drying in order to avoid the use of organic solvents. The effects of CNCs particle size, CNCs concentration, and inlet temperature of spray drying on microstructure and particle size of cellulose microspheres were investigated. The results indicated that the optimal average particle size and concentration of CNCs used for obtaining cellulose microspheres were 106 nm and 0.1 wt%, respectively. Under the optimal conditions, cellulose microspheres with a regular spherical morphology and an average particle size of ca. 3 ìm were obtained. The sulfuric acid hydrolysis and spray drying process barely affected the crystalline structure of cellulose. However, the introduced sulfhydryl groups, which were confirmed by Fourier transform infrared spectroscopy results, degraded the thermostability of cellulose. Generally speaking, converting CNCs to cellulose microspheres via spray drying is beneficial for promoting the controllable and continuous production of cellulose microspheres.

Journal articles
Open Access
Data-efficient determination of machine-specific process windows in thermoforming using the example of PCR materials, TAPPI Journal July 2025

ABSTRACT: In an industrial context, process windows for thermoplastics in thermoforming processes are still often determined through time-consuming trial-and-error approaches. This results in increased effort when commissioning new machines, implementing new technologies, or substituting sheet materials. One key reason is the lack of methods that allow for efficient, process-related assessment of material behavior and a quantitative definition of a “target state” of the heated sheet in relation to geometry and process conditions. In this study, we present the In-Situ Thermoforming Characterization (ITC) method as an application-oriented approach that enables format-independent evaluation of material behavior directly within the forming station of a thermoforming system. The method was successfully applied to a material substitution case, replacing conventional virgin polypropylene (PP) with post-consumer recyclate (PCR) — in this case, recycled PP (rPP) — in the production of a defined cup geometry. The results enabled the transfer of existing process knowledge from the virgin material to the recyclate, thereby accelerating material qualification. Based on the collected data, material behavior under process conditions could be mapped within the design space, making it possible to identify machine settings that deliver equivalent forming results in our test setup. Overall, the method shows strong potential for efficient and precise determination of machine-specific process windows.

Journal articles
Open Access
Gap mechanics in pulp refiners, TAPPI Journal June 2025

ABSTRACT: Studies of pulp refining have shown that a single bar impact on pulp has only a 1%•5% probability of producing a successful refining effect. This study has explored the reason why. An analysis of refining kinetics suggested that small segments of a fiber length, about a fiber diameter in size, are treated during each impact. Measurements of localized swelling along fiber lengths caused by refining supported this finding. Based on these findings, it was postulated that force transmittal through fiber networks occurred primarily at fiber crossings. The small size of fiber diameters relative to fiber lengths accounts for the low probability of a successful refining event at each impact. This probability, and the probability of fibers being captured and impacted during passage through a refiner, account for the need for multiple bar crossings to refine pulps.

Journal articles
Open Access
Predictive advisory solutions for chemistry management, control, and optimization, TAPPI Journal March 2025

ABSTRACT: Process runnability and end-product quality in paper and board making are often connected to chemistry. Typically, monitoring of the chemistry status is based on a few laboratory measurements and a limited number of online specific chemistry-related measurements. Therefore, mill personnel do not have real-time transparency of the chemistry related phenomena, which can cause production instability, including deposition, higher chemical consumption, quality issues in the end-product and runnability problems. Machine learning techniques have been used to establish soft sensor models and to detect abnormalities. Furthermore, these soft sensors prove to be most useful when combined with expert-driven interpretation. This study is aimed at utilizing a hybrid solution comprising chemistry and physics models and machine learning models for stabilizing chemistry-related processes in paper and board production. The principal idea is to combine chemistry/physics models and machine learning models in a fashion close to white box modeling. A cornerstone in the approach is to formulate explanations of the findings from the models; that is, to explain in plain text what the findings mean and how operational changes can mitigate the identified risks. The approach has been demonstrated for several different applications, including deposit control in the wet end, both raw water treatment and usage, and wastewater treatment. This approach provides mill personnel with knowledge of identified phenomena and recommendations on how to stabilize chemistry-related processes. Instead of using close to black box machine learning models, a hybrid solution including chemistry/physics models can enhance the performance of artificial intelligence (AI) deployed systems. A successful way of gaining the trust from mill personnel is by creating a plain text explanation of the findings from the hybrid models. The correlation between the likelihood of a phenomena and disturbance and the explanations are derived and validated by application and chemistry and physics experts.

Journal articles
Open Access
Research on an energy model for X-ray measurement of paper ash content using COMSOL, TAPPI Journal May 2025

ABSTRACT: Ash content is one of the critical quality parameters in papermaking production. Traditional 55Fe radioactive sources used for online ash content measurement have a short lifespan and high costs, while offline methods such as the combustion method or chemical analysis are time-consuming. Using an X-ray tube as the radiation source, continuous X-ray measurement offers advantages such as being rapid, non-destructive, and cost-effective. In this study, COMSOL software was employed to simulate the measurement process and establish an energy attenuation model for X-ray measurement of paper ash content. The model simulates the energy attenuation of X-rays before and after transmission through four materials: calcium carbonate (CaCO3), titanium dioxide (TiO2), wood-based plant fibers, and paper samples filled with CaCO3. The absorption coefficients of paper samples with varying ash content were investigated using the model and compared with experimental results obtained from continuous X-ray measurements. The results indicate that the proposed energy simulation model can reduce the measurement error of paper ash content by 1%, significantly enhancing the reliability and accuracy of ash content measurement.

Journal articles
Magazine articles
Open Access
Incorporation of post-consumer pizza boxes in the recovered fiber stream: Impacts of grease on finished product quality, TAPPI Journal March 2021

ABSTRACT: Grease and cheese contamination of used pizza boxes has led to misunderstanding and controversy about the recyclability of pizza boxes. Some collection facilities accept pizza boxes while others do not. The purpose of this study is to determine whether typical grease or cheese contamination levels associated with pizza boxes impact finished product quality. Grease (from vegetable oil) and cheese are essentially hydrophobic and in sufficiently high concentration could interfere with interfiber bonding, resulting in paper strength loss.Findings from this study will be used to determine the viability of recycling pizza boxes at current and future con-centrations in old corrugated containers (OCC) recovered fiber streams. These findings will also be used to inform the acceptability of pizza boxes in the recycle stream and educate consumers about acceptable levels of grease or cheese residue found on these recycled boxes.

Journal articles
Magazine articles
Open Access
Extension of a steady-state chlorine dioxide brightening model for Z-ECF bleaching of softwood kraft pulps, TAPPI Journal March 2021

ABSTRACT: Earlier studies developed a steady-state model to predict the brightness and/or bleach consumption during the chlorine dioxide brightening (D1) of softwood pulps produced by conventional elemental-chlorine-free (ECF) sequences. This model relates the chlorine dioxide consumed to the brightness gains predicated upon an asymptotic D1 brightness limit, an incoming D1 pulp brightness, and an equation parameter (ß11). The current investigation examines the application of this model to ECF sequences that use ozone delignification (Z-ECF). Literature D1 data from various Z-ECF bleaching studies, which investigated OZ, OD0/Z, and OZ/D0 delignification, were fitted to the model. The ß11 parameter was found to be linearly correlated to the entering kappa number. Interestingly, this linear relationship was found to be identical to the relationships observed when modeling the D1 stage for conventional ECF and chlorine-based bleach sequences. Subtle differences in D1 brightening response in the model among the various bleach sequences are reflected by incoming pulp brightness (at the same kappa number). The current model is used to illustrate how alterations to Z-ECF delignification affect D1 brightening and chlorine dioxide consumption.

Journal articles
Magazine articles
Open Access
Editorial: Industry coating expert Gregg Reed joins TAPPI Journal editorial board, TAPPI Journal November 2021

ABSTRACT: TAPPI and the TAPPI JOURNAL (TJ) editorial staff would like to welcome a new member to the TJ editorial board, Gregg Reed, Ph.D., technical support leader at Imerys in Gray, GA. In his current position, Gregg develops new mineral and specialty coating products for paper and packaging applications and manages customer requests, including pilot trials. He also supervises the activities of technicians and chemists in the laboratory.

Journal articles
Magazine articles
Open Access
Evaluation of rice straw for purification of lovastatin, TAPPI Journal November 2021

ABSTRACT: Cholesterol synthesis in the human body can be catalyzed by the coenzyme HMG-CoA reductase, and lovastatin, a key enzyme inhibitor, can reduce hypercholesterolemia. Lovastatin can be obtained as a secondary metabolite of Aspergillus terreus ATCC 20542. In this study, rice straw of lignocellulose was used in aeration and agitation bath fermentation in a 1-L flask, and a maximal crude extraction rate of 473 mg/L lovastatin was obtained. The crude extract was treated with silica gel (230•400 mesh) column chromatography. Ethyl acetate/ethanol (95%) was used as the mobile phase, and isolation was performed through elution with various ethyl acetate/ethanol ratios. The highest production rate of 153 mg/L was achieved with ethyl acetate/ethanol in a ratio of 8:2. The lovastatin gained from the crude extract was added to 12 fractions treated with 0.001 N alkali, and acetone was then added. After 24 h of recrystallization at 4°C, the extract underwent high-performance liquid chromatography. The purity had increased from 25% to 84.6%, and the recovery rate was 65.2%.

Journal articles
Magazine articles
Open Access
Editorial: Seshadri Ramkumar: Nonwovens specialist and TTU professor joins TJ Editorial Board, TAPPI Journal October 2021

ABSTRACT: TAPPI and the TAPPI JOURNAL (TJ) editorial staff would like to welcome a new member to the TJ Editorial Board, Seshadri “Ram” Ramkumar, Ph.D., a professor in the Department of Environmental Toxicology at Texas Tech University (TTU) in Lubbock, TX. Readers will be familiar with Ram as a frequent contributor of guest editorials in TAPPI Journal on the topic of nonwovens.