Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Prehydrolysis kraft pulping of jute cutting and caddis mixture for rayon production
ABSTRACT: Jute cutting, jute caddis, and cutting-caddis mixtures were prehydrolyzed by varying time and temperature to get about 90% prehydrolyzed yield. At the conditions of 170°C for 60 min of prehydrolysis, the yield for 100% jute cutting was 76.3%, while the same for jute caddis was only 67.9%. But with prehydrolysis at 150°C for 60 min, the yield was 90% for jute cutting, where 49.94% of original pentosan was dissolved and prehydrolysis of jute caddis at 140°C in 60 min yielded 86.4% solid residue. Jute cutting-caddis mixed prehydrolysis was done at 140°C for 30 min and yielded 92% solid residue for 50:50 cutting-caddis mixtures, where pentosan dissolution was only 29%. Prehydrolyzed jute cutting, jute caddis, and cutting-caddis mixtures were subsequently kraft cooked. Pulp yield was only 40.9% for 100% jute cutting prehydrolyzed at 170°C for 60 min, which was 10.9% lower than the prehydrolysis at 140°C. For jute cutting-caddis mixed prehydrolysis at 140°C for 45 min followed by kraft cooking, pulp yield decreased by 3.3% from the 100% cutting to 50% caddis in the mixture, but 75% caddis in the mixture decreased pulp yield by 6.7%. The kappa number 50:50 cutting-caddis mixture was only 11.3. Pulp bleachability improved with increasing jute cutting proportion in the cutting-caddis mixture pulp.
Journal articles
Magazine articles
Research needs for nanocellulose commercialization and applications
INTRODUCTION: This short review deals with some applications and research needs for nanocellulosic (NC) materials; primarily cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial cellulose (BC). Whereas CNC and BC materials are fairly homogenous, CNF materials represent a wide sector of different materials, often with a high heterogeneity. This is due to different pretreatment methods (mechanical, chemical, enzymatic), woodbased or agricultural-based materials, delignification and bleaching procedures, etc. The purpose of this comprehensive review is not to discuss the various production methods, for which the reader may consult with a selected number of reviews [1-6]; thus, the focus is on practical applications. Practical applications and potential markets were also discussed some years ago by other investigators [7-8]. Upscaling and choice of pretreatment methods, as well as economic considerations and different business models, have also been discussed, along with: œ Toxicity and environmental issues [9-10] œ The complex characterization of cellulose nanomaterials [4] The reader should also be aware of new contenders to the three classic groups of cellulosic nanomaterials, which are already in a commercial phase. These include cellulose filaments [11-12] and materials from mechanical grinding processes [13], and these materials may be nanostructures or not, depending on our classification. Finally, as indicated by the editorial on p. 275, scientists are currently taking a deep dive into the fundamental features of nanocellulosic materials [14-15].
Magazine articles
Suppliers investing in pilot coater facilities, TAPPI JOURNAL, May 2000, Vol. 83(5)
Suppliers investing in pilot coater facilities, TAPPI JOURNAL, May 2000, Vol. 83(5)
Magazine articles
Annual chip excellence award recognizes suppliers, TAPPI JOURNAL, November 2000, Vol. 83(11)
Annual chip excellence award recognizes suppliers, TAPPI JOURNAL, November 2000, Vol. 83(11)
Journal articles
Magazine articles
Lignocellulose fibers elaborating super-swollen three-dimensional cellulose hydrogels from solution in N, N-dimethylacetamide/lithium chloride, TAPPI JOURNAL February 2018
Lignocellulose fibers elaborating super-swollen three-dimensional cellulose hydrogels from solution in N, N-dimethylacetamide/lithium chloride, TAPPI JOURNAL February 2018
Journal articles
Magazine articles
Functionalization of wood/plant-based natural celluslose fibers with nanomaterials: a review, TAPPI JOURNAL February 2018
Functionalization of wood/plant-based natural celluslose fibers with nanomaterials: a review, TAPPI JOURNAL February 2018
Magazine articles
Editor's Note: Bright future for coating at ACFS, TAPPI JOUR
Editor's Note: Bright future for coating at ACFS, TAPPI JOURNAL November 2010
Journal articles
Magazine articles
In-process detection of fiber cutting in low consistency ref
In-process detection of fiber cutting in low consistency refining based on measurement of forces on refiner bars, TAPPI JOURNAL April 2017
Journal articles
Magazine articles
Decision-making process for the identification of preferred
Decision-making process for the identification of preferred lignin-based biorefinery strategies, TAPPI JOURNAL April 2017
Journal articles
Magazine articles
Low consistency refining of mechanical pulp — system design
Low consistency refining of mechanical pulp — system design, TAPPI JOURNAL July 2017