Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Test method and coating composition impact on measured moisture vapor transmission rate for waterborne coatings on paper, TAPPI Journal November 2024
ABSTRACT: Moisture vapor barrier is one of the necessary performance attributes for paper packages. Two methods are typically employed to assess the moisture vapor transmission rate (MVTR): the gravimetric cup method (ASTM E96) and the MOCON method (ASTM F1249). While those tests have been compared for free standing polymeric films, less is understood about their application in coated paper. Our results show that, despite a general agreement between the two methods, discrepancies exist where test protocols and material properties of coated paper impact the MVTR measurement. The measurement discrepancies can be explained by differences in local moisture concentration. Our study provides new insights on moisture vapor barrier assessment of waterborne coatings on paper and implications for achieving paper packages with improved barrier performance.
Journal articles
Magazine articles
Dielectric spectroscopic studies of biological material evolution and application to paper, TAPPI JOURNAL September 2018
Dielectric spectroscopic studies of biological material evolution and application to paper, TAPPI JOURNAL September 2018
Journal articles
Magazine articles
Progress in foam forming technology, TAPPI JOURNAL August 2019
ABSTRACT: This paper summarizes recent developments in foam forming that were mainly carried out in pilot scale. In addition to improving the efficiency of existing processes and allowing better uniformity in material, a wide variety of raw materials can be utilized in foam forming. The focus of this paper is thin webs—papers, boards and foam-laid nonwovens, along with the pilot scale results obtained at VTT in Finland. For paper and board grades, the most direct advantage of foam forming is the potential to produce very uniform webs from longer and coarser fibers and obtain material savings through that. Another main point is increased solids content after a wet press, which may lead to significant energy savings in thermal drying. Finally, the potential to introduce “difficult” raw materials like long synthetic or manmade fibers into a papermaking process enables the manufacturing of novel products in an existing production line. This paper also briefly discusses other interesting foam-based applications, including insulation and absorbing materials, foam-laid nonwovens, and materials for replacing plastics.
Journal articles
Magazine articles
The sticky behavior of pulp and paper mill biosludge during drying, TAPPI Journal June 2019
ABSTRACT: Pulp and paper mill biosludge becomes sticky after being dried to a certain solids content. As bio-sludge becomes sticky, it agglomerates and adheres to the heat transfer surfaces of the dryer. This undesirable property can lower the dryer efficiency and cause the drying equipment to fail.A systematic study was conducted to examine the sticky behavior of biosludge. The stickiness was evaluated by measuring the adhesive force between a sludge cake and a stainless steel substrate, and the cohesive force between a sludge cake and a sludge substrate. The results show that: i) both adhesive and cohesive forces increase markedly as the solids content increases, reaching a maximum value at about 13% solids, and then decrease steadily at a high-er solids content; ii) cohesive force is stronger than adhesive force, implying that biosludge tends to agglomerate rather than adhere to smooth equipment surfaces; and iii) mixing wood fines or fly ash from a biomass boiler reduc-es the stickiness of the mixture. These findings may help mills improve the thermal efficiency of biosludge dryers and to turn biosludge into a more attractive fuel for burning in biomass boilers.
Journal articles
Magazine articles
Fabrication of cross-linked starch-based nanofibrous mat with optimized diameter, TAPPI JOURNAL June 2019
ABSTRACT: The design and synthesis of natural and synthetic polymer blends have received recent and wide attention. These new biomaterials exhibit progress in properties required in the field of medicine and healthcare. Herein, the aim of present study is to fabricate starch (ST)/polyacrylic acid (PAA) electrospun nanofibrous mat with a smooth and uniform morphology, lowest fiber diameter (below 100 nm) and the highest possible starch content. Starch itself is poor in process-ability, and its electrospinning could be quite a challenging process. To address this, we carried out the response surface methodology (RSM) technique for modelling the electrospinning process. In order to have ST/PAA nanofibers with the finest possible diameter, optimized processing parameters (applied volt-age, nozzle-collector distance and feed rate) obtained from RSM technique were applied. ST/PAA electrospun nano-fibers with an average diameter of 74±13 nm were successfully achieved via the electrospinning method for the first time. The structure, preparation and properties of the nanofibrous structure were discussed. Results indicated that drug loaded ST/PAA blend nanofibrous structure has a great potential to be used in controlled drug release systems.
Journal articles
Magazine articles
A study of the softness of household tissues using a tissue softness analyzer and hand-felt panels, TAPPI Journal March 2019
ABSTRACT: This study applied the reciprocal matrix approach to deduce the correlation between hand-felt (HF) and tissue softness analyzer (TSA) instrumental measurements of tissue softness. The research was conducted in three phases, which are discussed separately. In the phase one study, results indicated that systematic collection of samples and preparation of test specimens were the foundation of successful tests. TSA-HF and tensile strength exhibited a strong negative correlation. In the future, same-unit physical properties can provide a basis for discuss-ing the commonality and complementary natures of hand-felt and TSA softness measurements. In phase two, through the reciprocal matrix approach, subjective softness assessments performed by humans were reliably quan-tified. The quantified values were further applied to a statistical analysis using the t-test to distinguish and train pro-fessional panelists. In phase three of HF panel test results, all independent panels were compared to one another under a uniform scale established by four standard samples. The calibrated HF panel values were incorporated with TSA-HF results to establish technical curves between the softness and tensile strength, which were helpful for onsite workers to carry out process controls.
Journal articles
Magazine articles
Discrete element method to predict coating failure mechanisms, TAPPI JOURNAL January 2018
Discrete element method to predict coating failure mechanisms, TAPPI JOURNAL January 2018
Journal articles
Anionically surface treated inkjet and flexographic inks and
Anionically surface treated inkjet and flexographic inks and their deinkability, October 2016 TAPPI JOURNAL
Journal articles
Magazine articles
Techno-economic analysis of ECF bleaching and TCF bleaching
Techno-economic analysis of ECF bleaching and TCF bleaching for a bleached eucalyptus kraft pulp mill, TAPPI JOURNAL October 2017
Journal articles
Magazine articles
Enzymatic treated viscose fibers functionalized by chitosan, TAPPI JOURNAL August 2018
Enzymatic treated viscose fibers functionalized by chitosan, TAPPI JOURNAL August 2018