Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Evaluation of Near-Drum Thinning Data in Recovery Boiler Gen
Evaluation of Near-Drum Thinning Data in Recovery Boiler Generating Bank Tubes, TAPPI JOURNAL July 2016
Journal articles
Magazine articles
A novel predictive method for filler coflocculation with cellulose microfibrils, TAPPI Journal November 2019
ABSTRACT: Different strategies aimed at reducing the negative impact of fillers on paper strength have been the objective of many studies during the past few decades. Some new strategies have even been patented or commercialized, yet a complete study on the behavior of the filler flocs and their effect on retention, drainage, and formation has not been found in literature. This type of research on fillers is often limited by difficulties in simulating high levels of shear at laboratory scale similar to those at mill scale. To address this challenge, a combination of techniques was used to compare preflocculation (i.e., filler is flocculated before addition to the pulp) with coflocculation strategies (i.e., filler is mixed with a binder and flocculated before addition to the pulp). The effect on filler and fiber flocs size was studied in a pilot flow loop using focal beam reflectance measurement (FBRM) and image analysis. Flocs obtained with cationic polyacrylamide (CPAM) and benonite were shown to have similar shear resistance with both strategies, whereas cationic starch (CS) was clearly more advantageous when coflocculation strategy was used. The effect of flocculation strategy on drainage rate, STFI formation, ash retention, and standard strength properties was measured. Coflocculation of filler with CPAM plus bentonite or CS showed promising results and produced sheets with high strength but had a negative impact on wire dewatering, opening a door for further optimization.
Journal articles
Magazine articles
Lignin-based resins for kraft paper applications, TAPPI Journal November 2019
ABSTRACT: We investigated miscanthus (MS) and willow (W) lignin-furfural based resins as potential reinforce-ment agents on softwood and hardwood kraft paper. These resins might be sustainable alternatives to the commercial phenolformaldehyde (PF) resins. Phenol is a petrochemical product and formaldehyde has been classified as a carcinogen by the U.S. Environmental Protection Agency. The lignin used in this study was derived from hot water extraction (160ºC, 2 h) of MS and W biomass, and may be considered sulfur-free. These biorefinery lignins were characterized for their chemical composition and inherent properties via wet chemistry and instrumental techniques. The resin blends (MS-resin and W-resin) were characterized for their molecular weight, thermal behavior, and mechanical properties. Mechanical properties were measured by the resin’s ability to reinforce softwood and hard-wood kraft papers. The effect of adding hexamethylenetetramine (HMTA), a curing agent, to the resin was also examined. Mixtures of PF and lignin-based resins were investigated to further explore ways to reduce use of non-renewables, phenol, and carcinogenic formaldehyde. The results show that lignin-based resins have the potential to replace PF resins in kraft paper applications. For softwood paper, the highest strength was achieved using W-resin, without HMTA (2.5 times greater than PF with HMTA). For hardwood paper, MS-resin with HMTA gave the highest strength (2.3 times higher than PF with HMTA). The lignin-based resins, without HMTA, also yielded mechanical properties comparable to PF with HMTA.
Journal articles
Magazine articles
Functionalization of wood/plant-based natural celluslose fibers with nanomaterials: a review, TAPPI JOURNAL February 2018
Functionalization of wood/plant-based natural celluslose fibers with nanomaterials: a review, TAPPI JOURNAL February 2018
Journal articles
Magazine articles
Print quality of flexographic printed paperboard related to coating composition and structure, TAPPI Journal January 2018
Print quality of flexographic printed paperboard related to coating composition and structure, TAPPI Journal January 2018
Journal articles
Magazine articles
Understanding the pulping and bleaching performances of eucalyptus woods affected by physiological disturbance, TAPPI Journal November 2018
Understanding the pulping and bleaching performances of eucalyptus woods affected by physiological disturbance, TAPPI Journal November 2018
Journal articles
Magazine articles
A novel unit operation to remove hydrophobic contaminants, TAPPI Journal April 2020
ABSTRACT: For mills making paper with recovered fiber, removal of hydrophobic contaminants is essential for trouble-free operation of paper machines. Significant cost savings on paper machine operation can be achieved by reducing deposits, which results in better quality, reduced downtime, increased fiber yield, and reduced energy consumption. Bubble nucleation separation (BNS) is a relatively new process for removing hydrophobic particles. When vacuum is applied to a slurry, dissolved gas bubbles nucleate on hydrophobic particles and drag them to the surface for easy removal. We constructed a 16-L batch unit to evaluate the effect of operating parameters on removal of hydrophobic particles, using statistical design of experiments. These results were used to guide our design of a 16-L continuous unit. We tested this unit on laboratory and mill samples. The removal of 60%•80% of hydrophobic particles was achieved with a low reject rate of < 2%.Following on this success, we built a 200-L pilot unit and tested it in our pilot plant. With promising results there, we installed the pilot unit at a commercial paper recycling mill. Over the course of several mill trials, we showed that it was possible to remove a considerable amount of suspended solids from paper machine white water with less than 2% rejects. Unfortunately, due to the unit only treating 50 L/min and the mill flow being 12000 L/min, we were not able treat a sufficient portion of the white water to know whether a large-scale implementation of BNS would improve paper machine runnability.
Journal articles
Magazine articles
Regulatory and sustainability initiatives lead to improved polyaminopolyamide-epichlorohydrin (PAE) wet-strength resins and paper products, TAPPI JOURNAL September 2018
Regulatory and sustainability initiatives lead to improved polyaminopolyamide-epichlorohydrin (PAE) wet-strength resins and paper products, TAPPI JOURNAL September 2018
Journal articles
Magazine articles
Three-dimensional visualization and characterization of paper machine felts and their relationship to their properties and dewatering performance, TAPPI Journal July 2021
ABSTRACT: Polymeric felts are commonly used in the papermaking process on the paper machine wet end, in the press section, and in the dryer section. They provide an important function during paper manufacturing, including as a carrier or support; as a filter media assisting with water removal on the paper machine; in retention of fibers, fines, and fillers; and in some applications, such as tissue and towel, to impart key structural features to the web. These felts can have highly interwoven complex internal structures comprised of machine direction and cross-machine direction yarns of varying sizes and chemical compositions. Here, we present a non-intrusive three-dimensional (3D) image visualization method using advanced X-ray computed tomography (XRCT). This method was used to characterize the complex 3D felt structure and determine the water removal characteristics of some commonly used paper machine felts. The structural features analyzed include porosity; specific pore-yarn interfacial surface area; 3D pore size distribution; 3D fiber or yarn-size distribution; and their variations through the thickness direction. The top, middle, and bottom layers of the felt have very different structures to assist with water removal and impart paper properties. The size distribution of the yarns, as well as the pores in the different layers of the felt, are also inherently different. These structural features were non-intrusively quantified. In addition, variation in the structural characteristics through the thickness of the felts and its potential role in papermaking is explored. In addition to the 3D structural characteristics, permeability characteristics and water removal characteristics, including rewetting of select felt samples, have also been experimentally determined. It is interesting to observe the relationship between key structural features and permeability and water removal characteristics. These relationships can provide additional insights into press felt design, as well as ways to improve product properties and the dewatering efficiency and productivity of the paper machine.
Journal articles
Magazine articles
An analytical approach to assess the interrelation of surface properties and softness of tissue paper, TAPPI Journal February 2023
ABSTRACT: The tissue industry constantly strives for improving the overall quality of tissue paper, as customers pay more attention to special quality features when it comes to a purchase decision between different products. As producers need to optimize their processes and furnish mixtures to keep production costs low, accurate and fast methods are crucial for characterization of important tissue properties. Here, we present a method for the characterization of the tissue surface regarding roughness and describe its relation to the tissue surface softness properties, based on a sample set of dry-creped bath tissue (DCT) with different amounts of softwood (SW), hardwood (HW), and nonwood pulp (NWP). The surface of tissue is complex and consists of several overlying structural features; thus, the optical non-contact measurement principle of focus variation was used to provide robust and reliable topographical surface information. Based on the obtained 3D data, areal surface analysis was performed to determine the surface roughness of the tissue samples, which is described by the developed interfacial areal ratio (Sdr) and the power spectral density (PSD). To determine the surface softness properties (TS7) of the tissue, a widely-used tissue softness analyzer (TSA) in the industry was employed. The surface softness (TS7) and the stiffness (D) parameters of this instrument were considered for surface and structural characterization. The results of the surface roughness (Sdr and PSD) and surface softness TS7 measurements show a good linear correlation, with higher surface roughness implying a higher TS7. The presented evaluation of these aspects of tissue softness allows an objective, fast, and accurate assessment of the relevant properties in addition to standard panel tests and is also applicable to other hygiene products.