Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 4,781–4,790 of 4,876 results (Duration : 0.011 seconds)
Journal articles
Magazine articles
Open Access
Development of paper quality parameter measurement in China, TAPPI Journal May 2022

ABSTRACT: Paper quality parameters are important indicators of paper production, such as paper moisture, basis weight, ash content, strength, and so on. This study focuses on the online measurement methods and development of paper basis weight, moisture, and ash measuring. First, the measurable paper parameters and quality control system products in China are analyzed. Then, the basis weight measurement methods, accuracy, and development are given in the range of 10~1000 g/m2. Third, the distinction between infrared and microwave methods for moisture measurement is discussed. Finally, the ash measurement is introduced. Production and consumption of tissue paper in China have continually increased during the past decade. Near-infrared light technology is mature for the measurement of paper parameters in the range of 10~200 g/m2 basis weight. However, the near-infrared online measurement of tissue paper is not widely used, and few tissue paper lines are equipped with this type of quality control system in China. Therefore, technology for near-infrared measurement of basis weight has a great potential market in the field of tissue paper production. This article analyzes the future development trend of near-infrared light in tissue paper basis weight measurement and summarizes the difficulties in near-infrared light measurement of tissue paper basis weight.

Journal articles
Magazine articles
Open Access
Modeling the influence of rheology on smooth rod coating systems, TAPPI Journal November 2022

ABSTRACT: Rod coating methods are of interest for the application of barrier coatings, especially at off-line facilities that may run at moderate speeds and narrow web widths. At lower line speeds and lower coating solids, it is difficult to achieve good coat weight control because of poor loading of the rod. While there is extensive literature available about blade and roll coating, there seems to be less reported on the rod loading of smooth rods to obtain various coat weights. Much of the work is around metering rods working on applicator rolls at high speeds that are associated with the metered size press, with a focus on ribbing instabilities. This work employs a simplified model, neglecting some complex features of rubber deformation and film split, to estimate the influence of the process parameters such as speed, rod diameter, viscosity, and rod loading on the coat weight obtained. As found in practice, at low speed and low viscosities, the coat weight-load curve is steep, leading to poor control of the coat weight and coat weight uniformity. If the viscosity is increased, the curve is modified, and control is possible with rod loading in a normal range. For shear thinning fluids described by the Carreau model, the power law index and other parameters need to be in the correct range to obtain the desired effect. Modeling predictions show a steeper dependence of coat weight with rod pressure when compared to pilot coater data. This may be caused by missing details in the mechanical loading of the rod related to tube pressure or from neglecting the impact of filter cake formation of the applied coating in the model.

Journal articles
Magazine articles
Open Access
Black liquor evaporator upgrades— life cycle cost analysis, TAPPI Journal March 2021

ABSTRACT: Black liquor evaporation is generally the most energy intensive unit operation in a pulp and paper manufacturing facility. The black liquor evaporators can represent a third or more of the total mill steam usage, followed by the paper machine and digester. Evaporator steam economy is defined as the unit mass of steam required to evaporate a unit mass of water from black liquor (i.e., lb/lb or kg/kg.) The economy is determined by the number of effects in an evaporator train and the system configuration. Older systems use four to six effects, most of which are the long tube vertical rising film type. Newer systems may be designed with seven or even eight effects using falling film and forced circulation crystallization technology for high product solids. The median age of all North American evaporator systems is 44 years. Roughly 25% of the current North American operating systems are 54 years or older. Older systems require more periodic maintenance and have a higher risk of unplanned downtime. Also, older systems have chronic issues with persistent liquor and vapor leaks, shell wall thinning, corrosion, and plugged tubes. Often these issues worsen to the point of requiring rebuild or replacement. When considering the age, technology, and lower efficiency of older systems, a major rebuild or new system may be warranted. The intent of this paper is to review the current state of black liquor evaporator systems in North America and present a basic method for determining whether a major rebuild or new installation is warrant-ed using total life cycle cost analysis (LCCA).

Journal articles
Magazine articles
Open Access
Can carbon capture be a new revenue opportunity for the pulp and paper sector?, TAPPI Journal August 2021

ABSTRACT: Transition towards carbon neutrality will require application of negative carbon emission technologies (NETs). This creates a new opportunity for the industry in the near future. The pulp and paper industry already utilizes vast amounts of biomass and produces large amounts of biogenic carbon dioxide. The industry is well poised for the use of bioenergy with carbon capture and storage (BECCS), which is considered as one of the key NETs. If the captured carbon dioxide can be used to manufacture green fuels to replace fossil ones, then this will generate a huge additional market where pulp and paper mills are on the front line. The objective of this study is to evaluate future trends and policies affecting the pulp and paper industry and to describe how a carbon neutral or carbon negative pulp and paper production process can be viable. Such policies include, as examples, price of carbon dioxide allowances or support for green fuel production and BECCS implementation. It is known that profitability differs depending on mill type, performance, energy efficiency, or carbon dioxide intensity. The results give fresh understanding on the potential for investing in negative emission technologies. Carbon capture or green fuel production can be economical with an emission trade system, depending on electricity price, green fuel price, negative emission credit, and a mill’s emission profile. However, feasibility does not seem to evidently correlate with the performance, technical age, or the measured efficiency of the mill.

Journal articles
Magazine articles
Open Access
Investigation of the influencing factors in odor emission from wet-end white water, TAPPI Journal October 2020

ABSTRACT: Emission of malodorous gases, such as volatile organic compounds (VOCs), hydrogen sulfide (H2S), and ammonia (NH3) during pulping and papermaking has caused certain harm to the air environment and human health. This paper investigated the influencing factors of odor emission from wet-end white water during the production of bobbin paper in a papermaking mill using old corrugated containers (OCC) as raw material. The concentration of malodorous gases emitted from wet-end white water was determined with pump-suction gas detectors. The results indicated that low temperature could limit the release of malodorous gases from white water. Specifically, no total volatile organic compounds (TVOC), H2S, and NH3 was detected at a temperature of 15°C. The concentrations of malodorous gases were slightly increased when temperature increased to 25°C. When temperature was 55°C, the released concentrations of TVOC, H2S, and NH3 were 22.3 mg/m3, 5.91 mg/m3, and 2.78 mg/m3, respectively. Therefore, the content of malodorous gases significantly increased with the temperature increase. The stirring of white water accelerated the release of malodorous gases, and the release rate sped up as the stirring speed increased. However, the total amount of malodorous gases released were basically the same as the static state. Furthermore, the higher the concentration of white water, the greater the amount of malodorous gases released. The pH had little influence on the TVOC release, whereas it significantly affected the release of H2S and NH3. With the increase of pH value, the released amount of H2S and NH3 gradually decreased. When pH reached 9.0, the release amount of H2S and NH3 was almost zero, proving that an alkaline condition inhibits the release of H2S and NH3.

Journal articles
Magazine articles
Open Access
Temperature profile measurement applications of moving webs and roll structures with intelligent roll embedded sensor technology, TAPPI Journal November 2021

ABSTRACT: An intelligent roll for sheet and roll cover temperature profiles is a mechatronic system consisting of a roll in a web handling machine that is also used as a transducer for sensing cross-machine direction (CD) profiles. The embedded temperature sensor strips are mounted under or inside the roll cover, covering the full width of the roll’s cross-dimensional length. The sensor system offers new opportunities for online temperature measurement through exceptional sensitivity and resolution, without adding external measurement devices. The measurement is contacting, making it free from various disturbances affecting non-contacting temperature measurements, and it can show the roll cover’s internal temperatures. This helps create applications that have been impossible with traditional technology, with opportunities for process control and condition monitoring. An application used for process analysis services without adding a roll cover is made with “iRoll Portable Temperature” by mounting the sensor on the shell in a helical arrangement with special taping. The iRoll Temperature sensors are used for various purposes, depending on the application. The two main targets are the online temperature profile measurement of the moving web and the monitoring of the roll covers’ internal temperatures. The online sheet temperature profile has its main utilization in optimizing moisture profiles and drying processes. This enables the removal of speed and runnability bottlenecks by detecting inadequate drying capacity across the sheet CD width, the monitoring condition of the drying equipment, the optimization of drying energy consumption, the prevention of unnecessary over-drying, the optimization of the float drying of coating colors, and the detection of reasons for moisture profile errors. This paper describes this novel technology and its use cases in the paper, board, and tissue industry, but the application can be extended to pulp drying and industries outside pulp and paper, such as the converting and manufacture of plastic films.

Journal articles
Magazine articles
Open Access
Model development for real oxygen delignification processes, TAPPI Journal October 2024

ABSTRACT: Previous extensive work has been done on modeling the oxygen delignification process, based on how the basic parameters, i.e., temperature, kappa number, concentration of alkali, and concentration of oxygen, affect the delignification rate. However, these models are not used extensively to evaluate the performance of real processes, primarily because they have not been able to properly consider all the essential issues affecting delignification in practice. Such issues include the mass transfer and consumption of oxygen, which defines the concentration of dissolved oxygen in the process, and the effect of that concentration on the delignification rate. In this paper, a new way to model the oxygen delignification process is used in which these parameters, among other smaller matters, are taken into account. The basic model and its parameters were defined by the information obtained from the literature, delignification made in the laboratory tests, and mill processes and mill tests. An essential aspect of these studies was the information obtained from the oxygen concentration measured in the residual gas obtained from the top of the reactor. With the aid of this measurement, it was possible to define more accurately the consumption of oxygen and partial pressure of oxygen that define the concentration of dissolved oxygen in the reactor. Using mill experiments, a model was formed that predicts the operation of the oxygen delignification process. The model was used to show how much the process could be improved by optimizing the charge of the oxygen. The mill experiments also confirmed that mass transfer of oxygen is modeled correctly enough, except when the charge of oxygen is very low and/or the mixing is not efficient enough. In that case, there is variation in the concentration of oxygen in the process that should be taken into account in the modeling.

Journal articles
Magazine articles
Open Access
A model black liquor formulation for use in development and evaluation of membranes for concentrating  weak black liquor, TAPPI Journal February 2022

ABSTRACT: As part of a larger program to develop robust membranes for concentrating weak black liquor prior to the evaporation step, several commercially available membranes were tested for suitability in this application. Given the variation in kraft black liquor for various wood species, the mill-to-mill variations, and the challenges of obtaining fresh samples, the need became apparent for a synthetic reference black liquor that would allow any membrane developer to test a new prototype membrane and compare the results with others. We present a formulation for a model black liquor (MBL) similar to real kraft black liquor in the composition of the major species that can be formulated from readily available reagents. The MBL was tested with two commercial membranes and resulted in similar levels of lignin retention as the real black liquor. It also showed similar viscosity behavior to real black liquor as a function of solids content.

Journal articles
Magazine articles
Open Access
Editorial: TAPPI Standards development: Authors and reviewers are welcome, TAPPI Journal July 2021

ABSTRACT: Readers of TAPPI Journal (TJ) and those involved with R&D and process and product quality will be familiar with TAPPI Standard Test Methods. These test methods are necessary for validating research and ensuring the quality of end products. In addition to test methods, TAPPI also publishes information that isn’t directly related to test methods, such as technical information and definitions, which include specifications, guidelines, and glossaries. All Standards information is developed with the consensus of a technical working group that adheres to set procedures.

Journal articles
Magazine articles
Open Access
Lignin-based resins for kraft paper applications, TAPPI Journal November 2019

ABSTRACT: We investigated miscanthus (MS) and willow (W) lignin-furfural based resins as potential reinforce-ment agents on softwood and hardwood kraft paper. These resins might be sustainable alternatives to the commercial phenolformaldehyde (PF) resins. Phenol is a petrochemical product and formaldehyde has been classified as a carcinogen by the U.S. Environmental Protection Agency. The lignin used in this study was derived from hot water extraction (160ºC, 2 h) of MS and W biomass, and may be considered sulfur-free. These biorefinery lignins were characterized for their chemical composition and inherent properties via wet chemistry and instrumental techniques. The resin blends (MS-resin and W-resin) were characterized for their molecular weight, thermal behavior, and mechanical properties. Mechanical properties were measured by the resin’s ability to reinforce softwood and hard-wood kraft papers. The effect of adding hexamethylenetetramine (HMTA), a curing agent, to the resin was also examined. Mixtures of PF and lignin-based resins were investigated to further explore ways to reduce use of non-renewables, phenol, and carcinogenic formaldehyde. The results show that lignin-based resins have the potential to replace PF resins in kraft paper applications. For softwood paper, the highest strength was achieved using W-resin, without HMTA (2.5 times greater than PF with HMTA). For hardwood paper, MS-resin with HMTA gave the highest strength (2.3 times higher than PF with HMTA). The lignin-based resins, without HMTA, also yielded mechanical properties comparable to PF with HMTA.