Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Surface modification of TiO2 with MPS and its effects on the wettability and physical properties of Kawayan Kiling (Bambusa vulgaris Schrad ex. Wendl) handsheets, TAPPI Jouranl April 2024
ABSTRACT: The need for hydrophobic papers has steadily increased over past years. These papers are often sought after as packaging materials and have high demand in the food industry and medicine. In this study, various concentrations of surface-modified TiO2-MPS were added to Kawayan Kiling (B. vulgaris) pulp at the wet-end section of handsheet formation. Surface-modified TiO2-MPS was made from nano-titanium (IV) oxide using 3-(trimethoxysilyl)propyl methacrylate as a coupling agent. The wettability of handsheets and physical properties were tested using various standard methods. Results reveal that the handsheets without surface-modified TiO2-MPS had the lowest water contact angle (WCA), while the handsheet with 12.34% (w/w) surface-modified TiO2-MPS had the highest WCA. At 17% (w/w) surfacemodified TiO2-MPS, the WCA rapidly declined. Handsheets with surface-modified TiO2-MPS have a rougher surface compared to the handsheets without chemicals and handsheets with unmodified TiO2. This roughness made the handsheet hydrophobic. The handsheet with 12.34% (w/w) unmodified TiO2 has a smoother surface than the control handsheet. Energy-dispersive X-ray spectroscopy (EDS) analysis shows that the handsheet with 12.34% (w/w) unmodified TiO2 contained titanium, while the handsheet with 12.34% (w/w) surface-modified TiO2-MPS contained both titanium and silicon. Generally, the physical properties of handsheets improved with surface-modified TiO2- MPS, especially grammage, bulk thickness, tensile index, and water absorptiveness, which showed statistically significant differences across treatments. The tear index did not differ between treatments.
Journal articles
Magazine articles
Effects of different soda loss measurement techniques on brownstock quality, TAPPI Journal July 2024
ABSTRACT: The efficiency of the kraft recovery plant, bleaching process, and paper machine are affected when black liquor carryover from the brownstock washers is not controlled well. Measuring soda loss within a mill can vary from using conductivity, either in-situ or with a lab sample of black liquor filtrate squeezed from the last stage washer, to measuring absolute sodium content with a lab sodium specific ion probe or spectrophotometer. While measuring conductivity has value in tracking trends in black liquor losses, it is not an acceptable method in reporting losses in absolute units, typically in lb/ton of pulp. This is further complicated when trying to benchmark soda loss performance across a fleet of mills with multiple washer lines. Not only do the testing methods vary, but the amount of bound soda on high kappa pulps can be significant. This variability creates inconsistent results, and studies are needed to understand the effect of different testing methods on the pulp quality. In this study, soda loss is expressed as sodium sulfate (Na2SO4). Four different methods to measure soda content in pulp off commercial brownstock washers were studied: full digestion (FD), washing soaking overnight and washing (WSW), soaking in boiling water and stirring 10-min (SW-10), and squeeze-no wash (Sq). Total, washable, and bound sodium sulfate calculations were determined for each soda content measuring technique using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results showed bound and washable sodium sulfate amounts significantly depend on which soda measurement technique was used. In addition, the soda results were correlated with the pulp kappa numbers. As the kappa number increases, bound soda increases, regardless of the soda measurement method used. Impacts of high sodium sulfate in brownstock are also discussed.
Journal articles
Magazine articles
Understanding the energy and emission implications of new technologies in a kraft mill: Insights from a CADSIM Plus simulation model, TAPPI Journal June 2024
ABSTRACT: Kraft mills play a vital role in energy transition because they have significant potential to reduce their own energy utilization and produce energy/products to decarbonize other sectors. Through biomass combustion and potential biogenic carbon emissions capture, these mills can contribute to offsetting emissions from other sectors. This research investigates the departmental and cross-departmental implications of technology upgrades on energy, steam, emissions, water, and chemicals using a CADSIM Plus simulation model. The model provides a comprehensive analysis of mass and energy balances, offering valuable insights into the benefits and limitations of each technology. The model facilitates scenario analysis and comparisons of process configurations, enabling data-driven decision-making for sustainable and competitive operations. Six high-impact technologies, including additional evaporator effects, weak black liquor membrane concentration, belt displacement washer for brownstock washing, oxygen delignification, and improvements to the pulp machine shoe press and vacuum pumps, are evaluated. Individual technologies resulted in energy savings of 1.2% to 5.4%, biomass consumption reductions of 8.6% to 31.6%, and total emissions reductions of 1.6% to 5.9%. Strategic decision-making must consider existing mill limitations, future technology implementation, and potential production increases. Future research will explore product diversification, biorefineries, and pathways to achieve carbon-negative operations, aiming to reduce emissions and secure a competitive future for kraft mills.
Journal articles
Magazine articles
PEERS 2023 Poster Session: a competition for students and young professionals, TAPPI Journal April 2023
ABTRACT: Originating in the field of scientific research and academia, poster sessions at conferences may date back to the mid-20th century, although the origins aren’t quite clear. Some sources have said as early as the 1950s and others later, while the term “poster session” itself may not have been coined until the 1975 American Physics Conference. The original concept behind poster sessions was to provide a platform for researchers to share their work in a more visual and interactive format as compared to the traditional long-form oral presentation.
Journal articles
Magazine articles
Black liquor evaporators upgrade — How many effects?, TAPPI Journal April 2023
ABSTRACT: Black liquor evaporation is generally the most energy intensive unit operation in a pulp and paper manufacturing facility. The black liquor evaporators can represent a third or more of the total mill steam usage, followed by the paper machine and digester. When considering an evaporator rebuild or a new system, the key design question is how many effects to include in the system. The number of effects is the main design feature that deter-mines the economy of the system and the steam usage for a given evaporation capacity. A higher number of effects increases steam economy and reduces energy cost to a point, but additional effects also have higher initial capital cost and increased power costs. This research paper uses life-cycle cost analysis (LCCA) as a method to determine the optimum number of evaporator effects for a new evaporator system. The same basic principles and method can also apply to existing evaporator rebuild projects.
Journal articles
Magazine articles
Totally chlorine-free peracetic acid pulping for nanocellulose isolation from hemp and poplar, TAPPI Journal August 2023
ABSTRACT: Nanocellulose is a promising and sustainable feedstock for developing advanced and functional materials. However, the characteristics of nanocellulose, such as crystallinity, surface energy, and aspect ratio, can vary depending on biomass source and pretreatment methods, leading to variable performance of the nanocellulose-based materials. In this study, cellulose nanocrystals (CNCs) were isolated from hemp and poplar using totally chlorine free (TCF) peracetic acid and sodium chlorite delignification and bleaching pretreatments to probe the influences of biomass source and treatment methods on the isolation and characteristics of CNCs. Our results showed that hemp and poplar were almost completely delignified by peracetic acid treatment, whereas sodium chlorite treatment left 5%•6% lignin in the pulp. The yields of CNCs from raw hemp and poplar biomass ranged from 9.8% to 21.9% and 10.9% to 28.3%, respectively, depending on the treatment methods. The dimensions of CNCs from TCF-treated biomass generally maintained a larger width and aspect ratio than those from sodium chlorite-treated biomass. The poplar-derived CNCs exhibited slightly higher crystallinity of 53%•58% than hemp-derived CNCs of 49%•54%. The zeta potential of the CNCs, ranging from -20.1 mV to -31.1 mV, ensured a well-dispersed aqueous solution. The surface energy (dispersive energy of 40•80 mJ/m2 and specific energy of 2•10 mJ/m2), water interaction, and thermal stability of the CNCs were comparable, regardless of the biomass source and pretreatment methods. Our finding suggests that the TCF technique with peracetic acid treatment is a promising delignification and bleaching approach to obtain cellulose-rich pulps from herbaceous and hardwood biomass for nanocellulose isolation.
Journal articles
Magazine articles
Editorial: Marc Foulger: All things papermaking, TAPPI JOUR
Editorial: Marc Foulger: All things papermaking, TAPPI JOURNAL November 2015
Journal articles
Magazine articles
Editorial: TAPPI Journal research highlights from 2019, TAPPI Journal January 2020
ABSTRACT: As we move into 2020, it's interesting to look back at the research topics that were covered in TAPPI Journal (TJ) the previous year. Members of the TJ editorial board organized diverse special issues on lignin, coating ,forming, and diverse papermaking and biorefinery topics, which are discussed in the following sections.
Journal articles
Magazine articles
Editorial: Vamsi Jasti: New nonwovens expert joins TAPPI Journal editorial board, TAPPI Journal July 2020
ABSTRACT: TAPPI and the TAPPI JOURNAL (TJ) editorial staff would like to welcome a new member to the TJ Editorial Board, Vamsi Krishna Jasti, Ph.D., a nonwovens product development scientist and product development manager at Ahlstrom-Munksjo Nonwovens LLC in Windsor Locks, CT, USA. He has more than 10 years of professional and academic experience n the area of fibert processing, product development, nonwovens processing, surface modification, and static electrification in countries ranging from India and Germany to China and the United States.
Journal articles
Magazine articles
Editorial: TAPPI Journal 2019 Best Research Paper addresses hard scale formation in green liquor pipelines, TAPPI Journal March 2020
ABSTRACT: TAPPI and the TAPPI Journal (TJ) Editorial Board would like congratulate the authors of the 2019 TAPPI Journal Best Research Paper Award: Alisha Giglio, Vladimiros Papangelakis, and Honghi Tran. Their paper, “The solubility of calcium carbonate in green liquor handling systems,” appeared on p. 595 of the October 2019 issue. This kraft recovery cycle research was recognized by the TJ Editorial Board for its innovation, creativity, scientific merit, and clear expression of ideas.