Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 4,811–4,820 of 5,241 results (Duration : 0.015 seconds)
Journal articles
Magazine articles
Open Access
Test method and coating composition impact on measured moisture vapor transmission rate for waterborne coatings on paper, TAPPI Journal November 2024

ABSTRACT: Moisture vapor barrier is one of the necessary performance attributes for paper packages. Two methods are typically employed to assess the moisture vapor transmission rate (MVTR): the gravimetric cup method (ASTM E96) and the MOCON method (ASTM F1249). While those tests have been compared for free standing polymeric films, less is understood about their application in coated paper. Our results show that, despite a general agreement between the two methods, discrepancies exist where test protocols and material properties of coated paper impact the MVTR measurement. The measurement discrepancies can be explained by differences in local moisture concentration. Our study provides new insights on moisture vapor barrier assessment of waterborne coatings on paper and implications for achieving paper packages with improved barrier performance.

Journal articles
Filtration performance of face masks and facepiece respirators used during COVID-19 pandemic, TAPPI Journal February 2025

ABSTRACT: The rapid spread of SARS-CoV-2 has created challenges for societies, healthcare settings, businesses, and institutions. To curb virus transmission, various measures like lockdown, social distancing, hand hygiene, and using appropriate personal protective equipment (PPEs), including face masks, have been recommended. Face masks and facepiece respirators are considered to act as barriers against microbial transmission from person to person. In this study, we selected barrier materials used during the COVID-19 pandemic that included four non-medical face masks and three facepiece respirators. Facepiece respirators were distributed by the U.S. Administration through pharmacy outlets. Results showed that facepiece respirator R95 has the highest filtration efficiency (above 99%), which remains more or less the same over different particle sizes. The N95 respirator’s filtration efficiency was lower than that of R95, but its barrier resistance was lower than that of the R95, indicating that it can be comfortably used over longer duration. Face masks were evaluated using ASTM F 3502-24 for their barrier performance. At 0.1 and 0.3 ìm particle size, domestically manufactured masks met the standard for higher performance. Interestingly, the results indicate that quality of raw materials and manufacturing standards play important roles, as is evident in domestically manufactured face mask and facepiece respirators.

Journal articles
Magazine articles
Open Access
Development of converging-diverging multi-jet nozzles for molten smelt shattering in kraft recovery boilers, TAPPI Journal March 2021

ABSTRACT: The effective shattering of molten smelt is highly desired in recovery boiler systems. Ideally, shatter jet nozzle designs should: i) generate high shattering energy; ii) create a wide coverage; and iii) minimize steam consumption. This study proposes a novel converging-diverging multi-jet nozzle design to achieve these goals. A laboratory setup was established, and the nozzle performance was evaluated by generating jet pressure profiles from the measurement of a pitot tube array. The results show that the shatter jet strength is greater with a large throat diameter, high inlet pressure, and a short distance between the nozzle exit and impingement position. Increasing the number of orifices generates a wider jet coverage, and the distance between the orifices should be limited to avoid the formation of a low-pressure region between the orifices. The study also demonstrates that an optimized converging-diverging multi-jet nozzle significantly outperformed a conventional shatter jet nozzle by achieving higher energy and wider coverage while consuming less steam.

Journal articles
Magazine articles
Open Access
Quantification of vegetable oil in recycled paper, TAPPI JOURNAL September 2020

ABSTRACT: Vegetable soybean oil is commonly used in cooking foods that are packaged in takeaway paper-board containers. Vegetable oil is hydrophobic, and in sufficiently high concentration, could interfere with interfiber bonding and result in paper strength loss. In order to quantify the effect of oil on the resulting paperboard strength, it is necessary to quantify the oil content in paper. A lab method was evaluated to determine the soybean oil content in paper. Handsheets were made with pulps previously treated with different proportions of vegetable oil. Pyrolysis gas chromatography-mass spectrometry (pyGCMS) was used to quantify the amount of oil left in the handsheets. The results revealed a strong correlation between the amount of oil applied to the initial pulp and the amount of oil left in the handsheets.In addition, the effect of vegetable oils on paper strength may be affected by the cooking process. Vegetable oil is known to degrade over time in the presence of oxygen, light, and temperature. The vegetable oil was put in an oven to imitate the oil lifecycle during a typical pizza cooking process. The cooked oil was then left at room temperature and not protected from air (oxygen) or from normal daylight. The heated, then cooled, oil was stored over a period of 13 weeks. During this time, samples of the aged oil were tested as part of a time-based degradation study of the cooked and cooled oil.

Journal articles
Magazine articles
Open Access
Recycling performance of softwood and hardwood unbleached kraft pulps for packaging papers, TAPPI Journal February 2023

ABSTRACT: The scope of this work is to evaluate the recyclability potential of hardwood and softwood unbleached kraft pulps, leading to a sound basis for comparison and even to support a decision about fibers accord-ing to the performance achieved. The influence of successive recycling cycles (up to 10 cycles) on the fiber morphol-ogy, pulp suspension drainability, water retention capacity, and handsheet mechanical properties were studied for Eucalyptus globulus and Pinus sylvestris unbleached kraft pulps. The performance of these pulps as linerboard and corrugating medium for packaging was also evaluated. The requirements for brown kraftliner and for high perfor-mance recycled fluting grades is preserved for E. globulus pulp during all 10 recycling cycles, evidenced by the mod-erate decrease of burst index and crush resistance index and by the short-span compression index, whereas the P. sylvestris pulp loses this rating after the second cycle. These results strongly support the higher performance of E. globulus pulp for recycling as compared with softwood kraft pulp from the perspective of packaging papers.

Journal articles
Magazine articles
Open Access
Chemical addition to wet webs using foam application, TAPPI Journal January 2023

ABSTRACT: In papermaking, the conventional way to add chemicals to the web is to dose them into the fiber stock and form the paper afterwards. However, in many cases, adding chemicals directly to the stock is challenging. For example, strength aids tend to increase flocculation in the stock, which limits the addition amounts of those aids. The need for better performance of paper (and paperboard) products has given rise to the need for functionalization of paper. Adding such functional chemicals to the stock is usually rather inefficient. Hence, novel methods are needed to add chemicals to the paper bulk. One such method is dosing chemicals to the wet web via foam application. In this study, we built a laboratory-scale sheetfed dynamic foam application device and utilized it to study addition of starch to wet bleached chemithermomechanical pulp (BCTMP) paper handsheets. The impact of parameters such as vacuum level, the amount of added chemical, and the viscosity of the foaming liquid on the penetration of starch into the wet web was explored. Starch penetration into wet webs was measured via iodine-potassium iodide staining, followed by image analysis. According to our results, controlling the viscosity of the foaming liquid gives the best possibility to control the penetration.

Journal articles
Magazine articles
Open Access
Nanocellulose•cationic starch• colloidal silica systems for papermaking: Effects on process and paper properties, TAPPI Journal October 2022

ABSTRACT: Laboratory tests were conducted to better understand effects on the papermaking process and handsheets when recycled copy paper furnish was treated with combinations of nanofibrillated cellulose (NFC), cationic starch, colloidal silica, and cationic retention aid (cPAM; cationic polyacrylamide). Dosage-response experiments helped to define conditions leading to favorable processing outcomes, including dewatering rates and the efficiency of fine-particle retention during papermaking. Effects were found to depend on the addition amounts of cationic starch and colloidal silica added to the system. It was shown that the presence of a polymer additive such as cationic starch was essential in order to achieve large strength gains with simultaneous usage of NFC.

Journal articles
Open Access
A laboratory-scale automated vacuum-assisted device for coating of cellulose nanofibrils onto paper, TAPPI Journal November 2025

ABSTRACT: An automated vacuum-assisted coating system was developed to deposit cellulose nanofibril (CNF) layers onto paper substrates, simulating potential industrial geometries while allowing precise control of web speed (10•20 m/min), vacuum time (up to 30 s), and applicator gap (0.5•0.9 mm). Vacuum assistance makes it possible to obtain coat weights over 5 g/m2 in a single pass and increases solids after coating from less than 10% to over 28%• 30%, reducing drying demand by more than 60%. Coat weights were tuned from 6 to over 11 g/m² by varying suspension solids (0.4•0.6 wt%), line speed, and filtration length (20•40 mm), with strong agreement between experimental data and model predictions. Barrier testing showed Kit test values for double folded samples of 9•12 and Gurley air resistances above 4 × 104 s once coat weights exceeded 7 g/m². Comparable performance was achieved with lower fines content CNF (60%) by increasing coat weight, providing technical flexibility and cost advantages for industrial scale-up.

Journal articles
Magazine articles
Open Access
Comparing a linear transfer function-noise model and a neural network to model boiler bank fouling in a kraft recovery boiler, TAPPI Journal, July 2024

ABSTRACT: Boiler bank fouling reduces heat transfer efficiency in kraft recovery boilers. Here, we model the relationships between boiler parameters and boiler bank pressure drop, an indicator of fouling, based on recovery boiler operating data. We compared two models: an autoregressive integrated exogenous (ARIX) model and a feedforward neural network. The ARIX model better simulates boiler bank pressure drop compared to the neural network (R2 of 0.64 vs. 0.58). Based on the ARIX model, we identified six boiler parameters that significantly influence boiler bank fouling and their relative contributions. Finally, we demonstrate how the models can simulate boiler bank pressure drop given artificial perturbations in boiler parameters.

Open Access
External fibrillation of wood pulp, TAPPI Journal June 2023

ABSTRACT: Pulp refining produces external fibrillation consisting of fibrils tethered to fiber surfaces, in addition to loose fibrils and fines. Both contribute to a larger bonding area that increases paper strength, but tethered fibrils have less likelihood of being washed out during papermaking. This study postulates the mechanism by which refining produces external fibrillation and the optimum conditions for doing so.The postulated mechanism is surface abrasion during sliding of fibers in refiner gaps. External fibrillation occurs when forces are great enough to partially dislodge fibrils from fiber surfaces, but not large enough to break the fibrils. The refining intensities to achieve these forces were determined by a mathematical model and experiments using a laboratory disc refiner. The optimum intensities in terms of specific edge load (SEL) for chemical pulps were about 0.1 J/m for hardwoods and 1.0 J/m for softwoods. An extension of this study suggested that abrasion may also account for most of the energy consumed in the mechanical pulping process.