Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Quantification of block testing for coated paper substrates, TAPPI Journal November 2024
ABSTRACT: Block resistance is a critical property for coated paper and board substrate that will be rolled, stacked, or otherwise contact itself after coating. Small differences in the coated substrate’s blocking can determine whether the substrate can be successfully used for its designated purpose. However, this crucial property is typically evaluated using a qualitative scale that is based on subjective operator ratings and impacted by factors that include: (1) sound of coated substrate during separation, and (2) force with which substrates are separated. This paper tests the hypothesis that quantifying the block test by measuring the force required to peel samples apart improves the test by: (1) providing more standardized testing conditions by controlling peel force and rate; (2) more clearly differentiating samples that experience minimal to some blocking; and (3) maintaining customizability to evaluate customer-specific test conditions. The method developed in this study uses a standard block tester and block testing conditions, but it peels the coated paper samples using a hot tack/heat seal instrument with force measurement capabilities. This paper demonstrates, using the instrument’s heat seal capabilities, that it can measure peel forces that represent the full range of observable block scores. The efficacy of this method was evaluated by having a group of trained operators engage in a randomized, blind experiment where they assessed block resistance on a set of coated paper samples using a modified qualitative block scale and compared their results to force measurements collected using the proposed method. The sample set included two coatings that have successfully run in commercial trials with minimal blocking, and one coating that experienced significant blocking in commercial trials despite only exhibiting some blocking at standard block test conditions in laboratory testing. The quantitative test method presented in this paper clearly differentiated these samples, whereas the qualitative assessment could not predict which samples had suitable block resistance for commercial use. As any tensile tester capable of measuring with 0.1 N resolution can be used for the Quantitative Block Test, the proposed method can be widely adopted. Furthermore, this method can be used for any block condition.
Journal articles
Magazine articles
Web lateral instability caused by nonuniform paper properties, TAPPI Journal January 2022
ABSTRACT: Lateral or cross-machine direction (CD) web movement in printing or converting can cause problems such as misregistration, wrinkles, breaks, and folder issues. The role of paper properties in this problem was studied by measuring lateral web positions on commercial printing presses and on a pilot-scale roll testing facility (RTF). The findings clearly showed that CD profiles of machine direction (MD) tension were a key factor in web stability. Uneven tension profiles cause the web to move towards the low-tension side. Although extremely nonuniform tension profiles are visible as bagginess, more often, tension profiles must be detected by precision devices such as the RTF. Once detected, the profiles may be analyzed to determine the cause of web offset and weaving problems.Causes of tension profiles can originate from nonuniform paper properties. For example, by means of case studies, we show that an uneven moisture profile entering the dryer section can lead to a nonuniform tension profile and lateral web movement. Time-varying changes in basis weight or stiffness may also lead to oscillations in the web’s lateral position. These problems were corrected by identifying the root cause and making appropriate changes. In addition, we developed a mathematical model of lateral stability that explains the underlying mechanisms and can be used to understand and correct causes of lateral web instability.
Journal articles
Magazine articles
Addressing production bottlenecks and brownstock washer optimization via a membrane concentration system, TAPPI Journal July 2021
ABSTRACT: Advancements in membrane systems indicate that they will soon be robust enough to concentrate weak black liquor. To date, the economic impact of membrane systems on brownstock washing in kraft mills has not been studied and is necessary to understand the viability of these emerging systems and their best utilization.This study investigated the savings that a membrane system can generate related to brownstock washing. We found that evaporation costs are the primary barrier for mills seeking to increase wash water usage. Without these additional evaporation costs, we showed that our hypothetical 1000 tons/day bleached and brown pulp mills can achieve annual savings of over $1.0 MM when operating at higher dilution factors and fixed pulp production rate. We then investigated the impact of increasing pulp production on mills limited by their equipment. In washer-limited mill examples, we calculated that membrane systems can reduce the annual operating cost for a 7% production increase by 91%. Similarly, in evaporator-limited mill examples, membrane systems can reduce the annual operating cost for a 7% production increase by 86%. These results indicated that membrane systems make a production increase significantly more feasible for these equipment-limited mills.
Journal articles
Magazine articles
Online measurement of bulk, tensile, brightness, and ovendry content of bleached chemithermomechanical pulp using visible and near infrared spectroscopy, TAPPI JOURNAL April 2018
Online measurement of bulk, tensile, brightness, and ovendry content of bleached chemithermomechanical pulp using visible and near infrared spectroscopy, TAPPI JOURNAL April 2018
Journal articles
Magazine articles
Understanding the risks and rewards of using 50% vs. 10% strength peroxide in pulp bleach plants, TAPPI Journal November 2018
Authors: Alan W. Rudie and Peter W. Hart | ABSTRACT: The use of 50% concentration and 10% concentration hydrogen peroxide were evaluated for chemical and mechanical pulp bleach plants at storage and at point of use. Several dangerous occurrences have been documented when the supply of 50% peroxide going into the pulping process was not stopped during a process failure. Startup conditions and leaking block valves during maintenance outages have also contributed to explosions. Although hazardous events have occurred, 50% peroxide can be stored safely with proper precautions and engineering controls. For point of use in a chemical bleach plant, it is recommended to dilute the peroxide to 10% prior to application, because risk does not outweigh the benefit. For point of use in a mechanical bleach plant, it is recommended to use 50% peroxide going into a bleach liquor mixing system that includes the other chemicals used to maintain the brightening reaction rate. When 50% peroxide is used, it is critical that proper engineering controls are used to mitigate any risks.
Journal articles
Magazine articles
Novel test method for measuring defects in barrier coatings, TAPPI Journal November 2022
ABSTRACT: In the last several years, activity to develop water-based barrier coatings (WBBCs) that meet challenging packaging performance requirements has increased dramatically. Cellulose-based packaging solutions can provide a more sustainable packaging option for replacing single-use plastic-based options like extrusion-based and laminated materials. An advantage of WBBCs is the opportunity to reduce the coating thickness applied, as long as the barrier requirements can be met. A challenge that must be overcome is the ability to maintain a defect and pin-hole-free coating layer after coating and drying to retain the barrier performance. Many formulation and coating parameters can affect the barrier coating layer quality; however, methods for detecting more subtle differences in these types of studies are not widely available. Work was carried out to develop a quantitative technique for detecting and measuring the quantity and size of defects in the barrier coating layer. A test method has been developed using a combination of dyed oil and image analysis to be able to characterize the imperfections in the coating surface. The use of dyed oil serves two purposes. First, it better simulates the types of materials, in this case, oils and grease, for which the barrier coating is expected to hold out. Second, it also provides contrast between the coating and failure points for testing. An image analysis technique is employed to characterize the number and size of the imperfections. For the former, it reduces the testing time required if a quality control or laboratory technician counts the dots. For the latter, it assists with judgment on the source of the root cause of the imperfection, such as base sheet defects, coating dispersion issues, or perhaps micro-blisters in the coating, as some examples.To show the benefit of this technique, several pilot coating studies were designed to see if the new technique could be utilized to detect differences in WBBC performance. Both process and chemical variables were evaluated. With refinement, it is believed this technique can be utilized in development work, as well as for a potential quality control technique for manufacturing of coated paper and paperboard products.
Journal articles
Conversion of paper-grade pulp from rice straw into dissolving pulp, TAPPI Journal June 2025
ABSTRACT: About 1,165 million metric tons of rice straw is generated every year worldwide, which can be a good source for the circular bioeconomy. In this research paper, the paper-grade pulp from rice straw was converted to dissolving-grade pulp by fractionation in a biorefinery initiative. Rice straw was cooked at an optimum condition of 8% potassium hydroxide (KOH) charge for 120 min at 150°C and produced a pulp yield of 47.2% with a kappa number of 18.5. Subsequently, D0(EP)D1 bleaching was carried out for the produced pulp, and the brightness of the pulp reached to 82.4%. From the black liquor, 16.5% of the lignin and 11.9% of the hemicellulose were isolated for producing biobased products and chemicals, and then the spent liquor was used for soil amendment. The bleached pulp was fractionated in a Bauer McNett fiber classifier. The pulp fibers retained on 16-, 30-, and 50-mesh screens were used as a longer fiber fraction pulp, and pulp fibers retained on 100- and 200-mesh screens were used as a shorter fiber pulp. The longer and shorter fiber fraction pulps were analyzed for cellulose, R10, pentosan, and viscosity. The long fiber fraction pulps were characterized by higher cellulose (88.2% vs. 83.1%) and lower pentosan (11.3% vs. 13.0%) content than the shorter fiber fraction pulps. The longer fiber fraction was further treated with cold KOH to remove residual hemicellulose. The KOH extraction reduced pentosan content in pulp to 6.3% and increased á-cellulose content to 91.3%. The short fiber fraction was converted to monomeric sugars using cellulase enzymes with varying reaction time, temperature, and consistency. The efficiency of cellulase activity was assessed through glucose yield and residual dry weight. A temperature of 45°C, 5.0 pH, 5% consistency, and 6 filter paper units/gram (FPU/g) o.d. pulp resulted in maximum sugar conversion of 85.7%.
Journal articles
Magazine articles
Temperature profile measurement applications of moving webs and roll structures with intelligent roll embedded sensor technology
ABSTRACT: An intelligent roll for sheet and roll cover temperature profiles is a mechatronic system consisting of a roll in a web handling machine that is also used as a transducer for sensing cross-machine direction (CD) profiles. The embedded temperature sensor strips are mounted under or inside the roll cover, covering the full width of the roll’s cross-dimensional length. The sensor system offers new opportunities for online temperature measurement through exceptional sensitivity and resolution, without adding external measurement devices. The measurement is contacting, making it free from various disturbances affecting non-contacting temperature measurements, and it can show the roll cover’s internal temperatures. This helps create applications that have been impossible with traditional technology, with opportunities for process control and condition monitoring. An application used for process analysis services without adding a roll cover is made with “iRoll Portable Temperature” by mounting the sensor on the shell in a helical arrangement with special taping. The iRoll Temperature sensors are used for various purposes, depending on the application. The two main targets are the online temperature profile measurement of the moving web and the monitoring of the roll covers’ internal temperatures. The online sheet temperature profile has its main utilization in optimizing moisture profiles and drying processes. This enables the removal of speed and runnability bottlenecks by detecting inadequate drying capacity across the sheet CD width, the monitoring condition of the drying equipment, the optimization of drying energy consumption, the prevention of unnecessary over-drying, the optimization of the float drying of coating colors, and the detection of reasons for moisture profile errors. This paper describes this novel technology and its use cases in the paper, board, and tissue industry, but the application can be extended to pulp drying and industries outside pulp and paper, such as the converting and manufacture of plastic films.
Journal articles
Magazine articles
Kraft recovery boiler operation with splash plate and/or beer can nozzles — a case study, TAPPI Journal October 2021
ABSTRACT: In this work, we study a boiler experiencing upper furnace plugging and availability issues. To improve the situation and increase boiler availability, the liquor spray system was tuned/modified by testing different combinations of splash plate and beer can nozzles. While beer cans are typically used in smaller furnaces, in this work, we considered a furnace with a large floor area for the study. The tested cases included: 1) all splash plate nozzles (original operation), 2) all beer can nozzles, and 3) splash plate nozzles on front and back wall and beer cans nozzles on side walls. We found that operating according to Case 3 resulted in improved overall boiler operation as compared to the original condition of using splash plates only. Additionally, we carried out computational fluid dynamics (CFD) modeling of the three liquor spray cases to better understand the furnace behavior in detail for the tested cases. Model predictions show details of furnace combus-tion characteristics such as temperature, turbulence, gas flow pattern, carryover, and char bed behavior. Simulation using only the beer can nozzles resulted in a clear reduction of carryover. However, at the same time, the predicted lower furnace temperatures close to the char bed were in some locations very low, indicating unstable bed burning. Compared to the first two cases, the model predictions using a mixed setup of splash plate and beer can nozzles showed lower carryover, but without the excessive lowering of gas temperatures close to the char bed.
Journal articles
Magazine articles
Application of ATR-IR measurements to predict the deinking efficiency of UV-cured inks, TAPPI Journal January 2022
ABSTRACT: In recent years, ultraviolet (UV)-curable ink has been developed and widely used in various printing applications. However, using UV-printed products (UV prints) in recovered paper recycling causes end-product dirt specks and quality issues. A new method was developed that can distinguish UV prints from other prints by means of attenuated total reflectance infrared (ATR-IR) spectroscopy. Application of this method could allow more efficient use of UV prints as raw materials for paper recycling.First, a mill trial was performed using UV prints alone as raw materials in a deinked pulp (DIP) process. Second, test prints were made with four types of UV inks: a conventional UV ink and three different highly-sensitive UV inks. Each print sample had four levels of four-color ink coverage patterns (100%, 75%, 50%, and 25%). Next, deinkability of all prints was evaluated by laboratory experiments. Finally, each print was measured using the ATR-IR method, and the relationship between the IR spectra and deinkability was investigated. Mill trial results showed that UV prints caused more than 20 times as many dirt specks as those printed with conventional oil-based ink. There were variations in recycling performance among UV prints taken from bales used for the mill trial. Lab tests clearly revealed that not all UV-printed products lead to dirt specks. In order to clarify the factors that affected deinkability of UV prints, the print samples were investigated by lab experiments. Key findings from lab experiments include: • The number of dirt specks larger than 250 µm in diameter increased as the ink coverage increased. • Higher ink coverage area showed stronger intensity of ATR-IR spectral bands associated with inks. These results indicate that deinkability of UV prints could be predicted by analysis of ATR-IR spectra. • Finally, the method was applied for assessment of recovered paper from commercial printing presses. It was confirmed that this method made it possible to distinguish easily deinkable UV prints from other UV prints. Based on these findings, we concluded that the ATR-IR method is applicable for inspection of incoming recovered paper.