Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 4,911–4,920 of 5,216 results (Duration : 0.012 seconds)
Journal articles
Magazine articles
Open Access
Co-pulping of Trewia nudiflora and Trema orientalis, TAPPI Journal June 2023

ABSTRACT: Trewia nudiflora, a fast-growing species, was evaluated as a pulpwood. The a-cellulose content of this species was 40.4% with a Klason lignin of 21.5%. It was characterized by shorter fibers with a thin cell wall. The pulp yield was 40% with a kappa number of 16 at the conditions of 18% active alkali charge and 30% sulfidity for 2 h cooking at 170°C. T. nudiflora was similar to Trema orientalis in anatomical, morphological, and chemical composition; therefore, mixed chips at a 50:50 mixture ratio were cooked under optimum conditions. The pulp yield of mixed chip cooking was 45.4% with a kappa number of 19.4. The tensile and tear index of T. nudiflora pulps were 64.8 Nœm/g and 11.5 kPaœm2/g at 35 °SR, respectively. The mixed chips, T. nudiflora, and T. orientalis pulps showed above 81% brightness when bleached by D0(EP)D1 sequence using 20 kg chlorine dioxide (ClO2)/ton of pulp.

Journal articles
Magazine articles
Open Access
Fundamental understanding of removal of liquid thin film trapped between fibers in the paper drying process: A microscopic approach, TAPPI Journal May 2020

ABSTRACT: In the fabrication of paper, a slurry with cellulose fibers and other matter is drained, pressed, and dried. The latter step requires considerable energy consumption. In the structure of wet paper, there are two different types of water: free water and bound water. Free water can be removed most effectively. However, removing bound water consumes a large portion of energy during the process. The focus of this paper is on the intermediate stage of the drying process, from free water toward bound water where the remaining free water is present on the surfaces of the fibers in the form of a liquid film. For simplicity, the drying process considered in this study corresponds to pure convective drying through the paper sheet. The physics of removing a thin liquid film trapped between fibers in the paper drying process is explored. The film is assumed to be incompressible, viscous, and subject to evaporation, thermocapillarity, and surface tension. By using a volume of fluid (VOF) model, the effect of the previously mentioned parameters on drying behavior of the thin film is investigated.

Journal articles
Magazine articles
Open Access
Editorial: The next phase of research in academia and industry, TAPPI Journal September 2023

ABSTRACT: The pulp, paper, and textile sectors have contrib-uted to lifestyle improvements for people with the development and commercialization of products like toilet tissue, facial wipes, diapers, and feminine hygiene products, to name a few. Research and development (R&D) efforts in these sectors are critical now more than ever due to the need for healthcare and lifesaving products, as became evident with the COVID-19 pandemic. Additionally, the need to meet net-zero carbon goals and the necessity to revive manufacturing in devel-oped economies clearly emphasize the requirement to ex-amine the R&D landscape. Academia, industry, and governments have respective roles to play in this field.

Journal articles
Magazine articles
Open Access
Convolutional neural networks enhance pyrolysis gas chromatography mass spectrometry identification of coated papers, TAPPI Journal August 2024

ABSTRACT: In the evolving paper industry, accurate identification of coated paper components is essential for sustainability and recycling efforts. This study employed pyrolysis-gas chromatography mass spectrometry (Py-GCMS) to examine six types of coated paper. A key finding was the minimal interference of the paper substrate with the pyrolysis products of the coatings, ensuring reliable analysis. A one-dimensional convolutional neural network (1D-CNN) was employed to process the extracted ion chromatograms directly, simplifying the workflow and achieving a predictive accuracy of 95.2% in identifying different coating compositions. Additionally, the study high-lighted the importance of selecting an optimal pyrolysis temperature for effective feature extraction in machine learning models. Specific markers for coated papers, including polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polybutylene succinate (PBS), polylactic acid (PLA), and waterborne polyacrylates (WP), were identified. This research demonstrates a novel approach to coated paper identification by combining Py-GCMS with machine learning, offering a foundation for further studies in product quality and environmental impact.

Journal articles
Magazine articles
Open Access
Effect of high sulfate content on viscosity of recovery boiler molten smelt, TAPPI Journal March 2024

ABSTRACT: A systematic study was conducted to examine the effect of high sulfate content on the freezing temperature of molten smelt and how this may contribute to the formation of viscous jellyroll smelt in recovery boilers. The results show that even for recovery boilers with a smelt reduction as low as 70%, the sulfate content in smelt has no or little effect on smelt freezing temperature, and hence, on molten smelt fluidity. The perceived adverse effect of high sulfate content on smelt fluidity and on jellyroll smelt formation comes from the high sulfate content in deposits that have fallen from the upper furnace. Fallen deposits may or may not form jellyroll smelt, depending on whether or not they can melt and be well-mixed with molten smelt by the time they reach the smelt spouts. It is not the high sulfate content in smelt resulting from the low smelt reduction efficiency that makes molten smelt viscous and forms jellyroll smelt, but rather, it is the incomplete melting of fallen deposits that results in one of the proposed mechanisms for jellyroll smelt formation.

Open Access
Mechanistic aspects of nanocellulose–cationic starch–colloidal silica systems for papermaking, TAPPI Journal February 2023

ABSTRACT: Optimization of a chemical additive program for a paper machine can require attention to both colloidal charges and kinetic effects. This work considered an additive program with two negatively charged substances (nanofibrillated cellulose [NFC] and colloidal silica) and two positively charged items (cationic starch and cationic acrylamide copolymer retention aid). Results were shown to depend on charge interactions; however, that clearly was not the whole story. Some findings related to cationic demand, dewatering, fine-particle retention, and flocculation among fibers were best explained in terms of at least partly irreversible complexation interactions between the charged entities. Adjustments in ratios between oppositely charged additives, their sequences of addition, and effects of hydrodynamic shear levels all affected the results. In general, the most promising results were obtained at a cationic starch level of 0.25% to 0.5% based on sheet solids in systems where the cationic starch was used as a pretreatment for NFC.

Journal articles
Magazine articles
Open Access
Effects of different ammonium lignosulfonate contents on the crystallization, rheological behaviors, and thermal and mechanical properties of ethylene propylene diene monomer/polypropylene/ammonium lignosulfonate composites, TAPPI Journal January 2020

ABSTRACT: Thermoplastic elastomer (TPE), made from ethylene propylene diene monomer (EPDM) and polypropylene (PP) based on reactive blending, has an excellent processing performance and characteristics and a wide range of applications. However, there are currently no reports in the literature regarding the usage of TPE in making composite boards. In this paper, EPDM, PP, and ammonium lignosulfonate (AL) were used as the raw materials, polyethylene wax was used as the plasticizer, and a dicumyl peroxide vulcanization system with dynamic vulcanization was used to make a new kind of composite material. This research studied the influences of the AL contents on the crystallization behaviors, rheological properties, thermal properties, and mechanical properties of the composites. The results showed that the AL content had a noticeable impact on the performance of the composite board. Accordingly, this kind of composite material can be used as an elastomer material for the core layer of laminated flooring.

Journal articles
Magazine articles
Open Access
Understanding conductivity and soda loss

Understanding conductivity and soda loss

Journal articles
Magazine articles
Open Access
Editorial: Celebrating an industry giant: Dr. Peter W. Hart, TAPPI Journal April 2024

ABSTRACT: On February 19, 1915, at the annual meeting of the American Paper and Pulp Association held at the Waldorf-Astoria Hotel in New York, a group of 35 people formed a new division called the “Technical Section of the American Paper and Pulp Association” with the objectives to: (1) stimulate interest in the science of pulp and papermaking; (2) provide means for the inter-change of ideas among its members; and (3) encourage original investigation. At that meeting, Professor Ralph H. McKee of the University of Maine (1909-1916) spoke. Professor McKee had initiated the first college course in Pulp and Paper in the United States. In his remarks he stated: