Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 41–50 of 2,256 results (Duration : 0.01 seconds)
Journal articles
Magazine articles
Coping Mechanisms for the Carbon Clampdown, Paper360º May/June 2022

Journal articles
Magazine articles
Open Access
Effectiveness of masks in the suppression of COVID-19 cases during the ongoing pandemic in India, TAPPI Journal October 2022

ABSTRACT: Perhaps the worst predicament faced by humanity in the twenty-first century is the COVID-19 pandemic, which is caused by the SARS-CoV-2 virus. Most parts of the world, including India, went into lockdowns for some period because of the massive increase in cases throughout 2020. Face masks became an important counter-measure for protecting the populace, health professionals, and medics, particularly during the period prior to the mass availability of vaccines. This study intends to evaluate the effectiveness of face masks in limiting the spread of the virus. The data for the number of COVID-19 cases was analyzed from January 1, 2022 to May 31, 2022, using Python programming. This timeframe involved face mask mandates and no mask requirement, and hence was considered to be ideal for analyzing the usefulness of face masks. A decline in cases during the mandate was observed, while the opposite occurred without the mandate. The outcome of the research showed that face masks are effective additional measures against the spread of SARS-CoV-2. This study elevates the value of personal protective equipment (PPE), such as face masks, made with nonwovens and other fabrics, as lifesavers in the case of airborne diseases such as COVID-19 and other pulmonary disorders.

Journal articles
Magazine articles
TAPPI News, Paper360º September/October 2022

Journal articles
Magazine articles
Open Access
The Mechanism of Bonding, TAPPI Journal September 2022

ABSTRACT: Three factors are involved in cellulose bonding--available area, contact, and hydrogen bonding.

Journal articles
Magazine articles
Over the Wire Summaries, Paper360º September/October 2022

Journal articles
Magazine articles
A Closer Look at Tooling, Paper360º September/October 2022

Journal articles
Magazine articles
Open Access
Dynamic out-of-plane compression of paperboard — Influence of impact velocity on the surface, TAPPI Journal February 2024

ABSTRACT: Processes that convert paperboard into finished products include, for example, printing, where the paperboard is subjected to rapid Z-directional (ZD) compression in the print nip. However, measuring and evaluating the relevant properties in the thickness direction of paperboard are not necessarily straightforward or easy. Measuring at relevant, millisecond deformation rates further complicates the problem. The aim of the present work is to elucidate some of the influences on the compressive stiffness. Both the initial material response and the overall compressibility of the paperboard is studied. In this project, the effect on the material response from the surface structure and the millisecond timescale recovery is explored.The method utilized is a machine called the Rapid ZD-tester. The device drops a probe in freefall on the substrate and records the probe position, thus acquiring the deformation of the substrate. The probe is also allowed to bounce several times on the surface for consecutive impacts before being lifted for the next drop. To investigate the time dependent stiffness behavior, the probe is dropped several times at the same XY position on the paperboard from different heights, thus achieving different impact velocities. The material response from drops and bounces combined allows study of the short-term recovery of the material. The material in the study is commercial paperboard. The paperboard samples are compared to material where the surface has been smoothed by grinding it. Our study shows that there is a non-permanent reduction in thickness and a stiffening per bounce of the probe, indicating a compaction that has not recovered in the millisecond timescale. Additionally, a higher impact velocity has an initial stiffening effect on the paperboard, and this is reduced by smoothing the surface.

Journal articles
Magazine articles
Open Access
The role of hornification in the deterioration mechanism of physical properties of unrefined eucalyptus fibers during paper recycling, TAPPI Journal February 2024

ABSTRACT: Physical properties of cellulosic paper deteriorate significantly during paper recycling, which hinders the sustainable development of the paper industry. This work investigates the property deterioration mechanism and the role of hornification in the recycling process of unrefined eucalyptus fibers. The results showed that during the recycling process, the hornification gradually deepened, the fiber width gradually decreased, and the physical properties of the paper also gradually decreased. After five cycles of reuse, the relative bonding area decreased by 17.6%, while the relative bonding force decreased by 1.8%. Further results indicated that the physical property deterioration of the paper was closely related to the decrease of fiber bonding area. The fiber bonding area decreased linearly with the reduction of re-swollen fiber width during paper recycling. Re-swollen fiber width was closely related to the hornification. Hornification mainly reduces the bonding area of unrefined eucalyptus fiber rather than the bonding force. The work elucidates the role of hornification in the recycling process of unrefined eucalyptus fibers and the deterioration mechanism of paper physical properties, which will be helpful to control the property deterioration of paper and achieve a longer life cycle.