Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Continuous digester process safety improvements • Stress corrosion cracking and overpressure protection lessons learned and opportunities, TAPPI Journal October 2024
ABSTRACT: Georgia-Pacific has recent experience with continuous digester stress corrosion cracking (SCC) repairs where the extent of SCC was more than previous spot inspections had predicted (one digester had anodic protection, one did not). This paper offers case studies of reviewed and improved digester inspections by use of “boat” samples to quantify the depth of cracking mechanism. Boat sample test data is used to support repair recommendations based on hardness testing. Georgia-Pacific also reviewed overpressure protection systems and corrected gaps found in these systems. These included updating to the latest original equipment manufacturer (OEM) designs and formalizing functional testing procedures and practices. This review of digester inspection, testing, and repairs since 2020 provides: (1) a basis for including a 3rd party corrosion expert to be a part of inspections; (2) removes the use of power-wire brushes; (3) enhances digester inspection with 100% phased-array ultrasonic testing to detect SCC; and (4) ensures overpressure protection design and testing is aligned with corporate needs and the site-specific challenges.
Journal articles
Magazine articles
Extensive function of green synthesized titania nanoparticles: Photodegradation of Congo red, TAPPI Journal September 2023
ABSTRACT: Several extensive research studies have explored the advantages of green templates in the synthesis of structure and morphology-controlled photocatalytic nanomaterials. This paper compares the abilities of zingiber rhizome extract (ZE) and tapioca starch extracts (TS) in modifying the surface and optical properties of titania nanoparticles (TNP) synthesized by solgel technique. The synthesized nanocatalysts were characterized using various physicochemical techniques. While zingiber (ginger) extract effectively promotes the formation of dual anatase and rutile phases, tapioca extract supports formation of the single anatase phase of titania. These two extracts were examined for the degradation of Congo red in the presence of sunlight. The photomineralization and recyclability of catalysts were evaluated through total organic content analysis. The easy recovery and reusability of zingiber and tapioca biomasses, along with good control over the growth of nanoparticles, enable them to be implicit novel green templates in the successful synthesis of photoactive mesoporous nanotitania.
Journal articles
Magazine articles
A new approach for the preparation of cellulose nanocrystals from bamboo pulp through extremely low acid hydrolysis, TAPPI Journal January 2020
ABSTRACT: As a renewable and biodegradable nanomaterial, cellulose nanocrystal (CNC) has a wide range of potential applications, but production of CNC faces significant challenges in capital investment and manufacturing cost. In this work, the one-step preparation of CNC from bleached kraft bamboo pulp by extremely low acid (concen-tration of acid = 0.1 wt%) hydrolysis was demonstrated. The experimental data indicated that the yield of CNC was strongly affected by the operating pressure and concentration of hydrochloric acid (HCl), as well as temperature. Rod-like CNC with a mean particle size of 524 nm was obtained through an extremely low acid (ELA) hydrolysis pro-cess. The yield of CNC can reach to 37.1% by an ELA hydrolysis process at 180°C for 60 min with 0.08 wt% HCl and 20 MPa operating pressure. The Fourier transform-infrared spectroscopy (FTIR) measurements show that the as-pre-pared CNC maintained cellulose structure. Compared with a conventional CNC prepared by strong sulfuric acid (H2SO4) hydrolysis, the CNC prepared by ELA hydrolysis process exhibited much higher thermal stability.
Journal articles
Magazine articles
Case study: Paper mill power plant optimization—balancing steam venting with mill demand, TAPPI Journal June 2020
ABSTRACT: Most Power departments are tasked with generating steam to support mill wide operations, generate electricity, and reduce operating costs. To accomplish these tasks, power boilers generate high pressure steam that is reduced to intermediate and low pressures for process utilization in the mill by means of steam turbine generator extraction or pressure reducing valves. The most economical method to reduce steam pressure is the use of steam turbine generators, as electricity is generated from the steam when it is reduced in pressure. Electricity that is produced by these generators provides a substantial financial benefit and helps offset overall operational costs. To achieve tangible financial gains, the mill must evaluate the overall cost of steam production and the price of electricity.The current work provides a case study of power plant optimization that evaluated electricity production and steam production costs balanced with mill steam demand. Process and cost optimization led to a significant reduc-tion in low pressure steam venting, resulting in reduced fuel consumption and reduced operating cost.
Journal articles
Magazine articles
Dynamic compression characteristics of fiber-reinforced shoe press belts, TAPPI Journal April 2025
ABSTRACT: Shoe press belts contribute significantly to the overall dewatering performance in the press section of a paper machine. Within the shoe press nip, the press belt faces a dynamic and multidimensional load that mainly leads to a compression of the structure. As this will cause a loss in void volume, knowledge of the dynamic compression characteristics of shoe press belts is crucial for optimized dewatering. A novel method was developed to examine the dynamic compression characteristics of grooved polyurethane press belts. Therefore, an experimental setup allowing realistic boundary conditions to test specimens was placed in a servo-hydraulic testing machine. Press belt specimens with different matrix material formulations and groove patterns were tested under varying load rates equivalent to different paper machine operational speeds. The results showed an evident sensitivity of the dynamic compression stiffness to the operational speed of the paper machine. This behavior was seen to be more sensitive to changes in the matrix material formulation than to adaptions of the groove pattern. As a result, the compression of the press belt within a shoe press nip is not only influenced by the peak pressure within the shoe press nip but also depends on the operational speed of the paper machine.
Journal articles
Editorial: The emergence of AI in additives development, TAPPI Journal March 2025
ABSTRACT: The continuing evolution of artificial intelligence (AI) and its penetration into the core of the world of papermaking were undeniable at TAPPICon 2024 and especially within the content presented and sponsored by TAPPI’s Papermaking Additives Committee. On one side of the spectrum, there were traditional methods of chemical development and application grounded in natural intelligence, while on the other, there was the emerging presence of algorithmic decision-making and machine learning within the development cycle. The latter technology is brimming with the kind of promise that could reshape how additives are conceived, developed, and applied, turning what was once a matter of trial and error into something far more precise and previously out of reach.
Journal articles
Magazine articles
Effects of orders of addition in nanocellulose•cationic starch• colloidal silica systems for papermaking, TAPPI Journal October 2022
ABSTRACT: Two orders of addition were compared when preparing paper handsheets from recycled copy paper furnish in combination with nanofibrillated cellulose (NFC), cationic starch, colloidal silica, and cationic retention aid (cPAM; cationic polyacrylamide). Faster dewatering and higher fine-particle retention were obtained at equal optimized dosages of additives when the colloidal silica was added last, after addition of the cPAM. The same order of addition also provided a higher gain in the paper’s tensile strength. However, higher paper stiffness was achieved when the colloidal silica was instead added to the NFC, after its pretreatment with cationic starch. Results were consistent with the principle that papermaking additives added shortly before sheetforming tend to have the largest effects on drainage and retention. The results also demonstrated a sensitivity to the relative dosages of positively and negatively charged additives.
Recycling performance of softwood and hardwood unbleached kraft pulps for packaging papers, TAPPI Journal February 2023
ABSTRACT: The scope of this work is to evaluate the recyclability potential of hardwood and softwood unbleached kraft pulps, leading to a sound basis for comparison and even to support a decision about fibers accord-ing to the performance achieved. The influence of successive recycling cycles (up to 10 cycles) on the fiber morphol-ogy, pulp suspension drainability, water retention capacity, and handsheet mechanical properties were studied for Eucalyptus globulus and Pinus sylvestris unbleached kraft pulps. The performance of these pulps as linerboard and corrugating medium for packaging was also evaluated. The requirements for brown kraftliner and for high perfor-mance recycled fluting grades is preserved for E. globulus pulp during all 10 recycling cycles, evidenced by the mod-erate decrease of burst index and crush resistance index and by the short-span compression index, whereas the P. sylvestris pulp loses this rating after the second cycle. These results strongly support the higher performance of E. globulus pulp for recycling as compared with softwood kraft pulp from the perspective of packaging papers.
Nanocellulose–cationic starch– colloidal silica systems for papermaking: Effects on process and paper properties, TAPPI Journal October 2022
ABSTRACT: Laboratory tests were conducted to better understand effects on the papermaking process and handsheets when recycled copy paper furnish was treated with combinations of nanofibrillated cellulose (NFC), cationic starch, colloidal silica, and cationic retention aid (cPAM; cationic polyacrylamide). Dosage-response experiments helped to define conditions leading to favorable processing outcomes, including dewatering rates and the efficiency of fine-particle retention during papermaking. Effects were found to depend on the addition amounts of cationic starch and colloidal silica added to the system. It was shown that the presence of a polymer additive such as cationic starch was essential in order to achieve large strength gains with simultaneous usage of NFC.
Improving refining efficiency with deflocculation, TAPPI Journal May 2022
ABSTRACT: The ability to load a refiner requires the formation of a fiber mat between opposing refiner bars. One of the consequences of this is the formation of flocs that persist through the refiner grooves and exit the refiner. These flocs interfere with sheet strength, requiring additional energy to make up the strength deficit. In addition, flocs can initiate string formation, resulting in machine efficiency issues such as cross-machine profile deterioration and the downtime required to correct it. Novel refiner plate modifications have been shown to improve refining efficiency in otherwise identical refiner plates. Energy savings are typically around 15% of gross refining energy on the basis of the treated stock, although much higher reductions have also been seen. Addressing this previously underappreciated flaw in conventional refining enables greenhouse gas reduction and other benefits related to sheet strength and machine efficiency.