Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Editorial: Vipin Varma joins TJ Editorial Board as expert on environmental and sustainability topics, TAPPI Journal October 2022
ABSTRACT: TAPPI and the TAPPI JOURNAL (TJ) editorial staff would like to welcome a new member to the TJ Editorial Board, Vipin Varma, Ph.D., who is vice president, Manufacturing Programs, at the National Council of Air and Stream Improvement (NCASI), headquartered in Cary, NC, USA. NCASI develops technical information that is critical for forest products companies to meet and surpass their environmental and sustainability goals. Vipin will provide expertise on environmental, sustainability, air emissions, and water topics relevant to the pulp and paper industry. In his position on the TJ Editorial Board, he succeeds Paul Wiegand, NCASI’s vice president for Water and Chemical Management Programs, who served from 2007 to 2022.
Research on improving the basis weight measurement accuracy of tissue paper based on PSO-BP neural network, TAPPI Journal October 2022
ABSTRACT: The near-infrared (NIR) sensor can be used for measuring the basis weight and moisture of tissue paper, but the measurement accuracy is not ideal for this paper grade. The weight range of the tissue is 10~30 g/m2, indicating that it is a low gram weight paper. The temperature and humidity of the production environment significantly impact an NIR sensor. This paper focuses on improving the measurement accuracy of tissue paper basis weight. In order to reduce the influences of temperature and humidity, a mathematical model based on a particle swarm optimization back propagation (PSO-BP) neural network is proposed. In comparison with multiple linear regression measurement models, the basis weight measurement error with the PSO-BP model is within ± 0.5 g/m2. This model can effectively improve the measurement accuracy and has a good effect on overcoming the basis weight nonlinear effect caused by the changes in ambient temperature and humidity.
Effects of orders of addition in nanocellulose–cationic starch– colloidal silica systems for papermaking, TAPPI Journal October 2022
ABSTRACT: Two orders of addition were compared when preparing paper handsheets from recycled copy paper furnish in combination with nanofibrillated cellulose (NFC), cationic starch, colloidal silica, and cationic retention aid (cPAM; cationic polyacrylamide). Faster dewatering and higher fine-particle retention were obtained at equal optimized dosages of additives when the colloidal silica was added last, after addition of the cPAM. The same order of addition also provided a higher gain in the paper’s tensile strength. However, higher paper stiffness was achieved when the colloidal silica was instead added to the NFC, after its pretreatment with cationic starch. Results were consistent with the principle that papermaking additives added shortly before sheetforming tend to have the largest effects on drainage and retention. The results also demonstrated a sensitivity to the relative dosages of positively and negatively charged additives.
Journal articles
Magazine articles
Determining operating variables that impact internal fiber bonding using Wedge statistical analysis
ABSTRACT: In this study, Wedge statistical analysis tools were used to collect, collate, clean up, plot, and analyze several years of operational data from a commercial paper machine. The z-direction tensile (ZDT) and Scott Bond tests were chosen as representative of fiber bond strength. After analyzing thousands of operational parameters, the ones with the most significant impact upon ZDT involved starch application method, starch penetration, and the amount of starch applied. Scott bond was found to be significantly impacted by formation and refining. Final calendering of the paper web has also shown an impact on internal fiber bonding.
Journal articles
Magazine articles
A novel predictive method for filler coflocculation with cellulose microfibrils, TAPPI Journal November 2019
ABSTRACT: Different strategies aimed at reducing the negative impact of fillers on paper strength have been the objective of many studies during the past few decades. Some new strategies have even been patented or commercialized, yet a complete study on the behavior of the filler flocs and their effect on retention, drainage, and formation has not been found in literature. This type of research on fillers is often limited by difficulties in simulating high levels of shear at laboratory scale similar to those at mill scale. To address this challenge, a combination of techniques was used to compare preflocculation (i.e., filler is flocculated before addition to the pulp) with coflocculation strategies (i.e., filler is mixed with a binder and flocculated before addition to the pulp). The effect on filler and fiber flocs size was studied in a pilot flow loop using focal beam reflectance measurement (FBRM) and image analysis. Flocs obtained with cationic polyacrylamide (CPAM) and benonite were shown to have similar shear resistance with both strategies, whereas cationic starch (CS) was clearly more advantageous when coflocculation strategy was used. The effect of flocculation strategy on drainage rate, STFI formation, ash retention, and standard strength properties was measured. Coflocculation of filler with CPAM plus bentonite or CS showed promising results and produced sheets with high strength but had a negative impact on wire dewatering, opening a door for further optimization.
Journal articles
Effects of localized environment on eucalyptus clone chemica
Effects of localized environment on eucalyptus clone chemical composition, TAPPI JOURNAL September 2016
Journal articles
Magazine articles
Toward valorization of lignin: characterization and fast pyr
Toward valorization of lignin: characterization and fast pyrolysis of lignin recovered from hot-water extracts of electron-beam irradiated sugar maple, TAPPI JOURNAL April 2017
Journal articles
Magazine articles
Impact of different calendering strategies on barrier coating pickup, TAPPI Journal November 2023
ABSTRACT: Paper was pre-calendered in a pilot scale configuration with a traditional soft nip calender and a metal belt calender. All calendering strategies reduced surface roughness and permeability of the samples, but different strategies affected the surface roughness and permeability differently. The metal belt calender seemed to have a larger effect on the large-scale variations compared to the soft nip calender. Six test points from the pilot calendered papers were chosen for laboratory coating studies. Uncalendered paper was included as reference samples. The calendered samples and the reference were pre-coated with a regular pigmented coating consisting of a ground calcium carbonate (GCC) pigment and a styrene acrylate (SA) latex. Both uncoated and pre-coated substrates were barrier coated with a polyvinyl alcohol (PVOH) in one and two layers. The coating pickup was determined gravimetrically, and the barrier properties were evaluated with TAPPI Standard Test Method T 454 grease resistance test. All samples needed two PVOH coating layers to form a grease barrier. The uncalendered sheets showed the best results with one coating layer, but this was at the expense of a higher coating pickup compared to the calendered sheets. The barrier coating pickup could be reduced by a combination of high temperature metal belt calendering and pre-coating. The high temperature and long residence time in the nip enabled plasticization of the fibers. This led to an irreversible deformation, even after water application. This meant that the smoothness obtained during calendering would be less affected by water-induced roughening during the coating operation.
Journal articles
Magazine articles
Use of kaolin clay in aqueous barrier coating applications, TAPPI Journal November 2023
ABSTRACT: Paper-based packaging with barrier effect, as opposed to single use plastics, is gaining more prominence for sustainability reasons. At the same time, latex- or biopolymer-based aqueous barrier coating dispersions are increasingly being adopted as a better alternative to the traditional barrier coating materials, such as wax, surface active chemicals, and polyethylene. In this work, studies were performed to determine the influence of different kaolin clays in latex binder-based aqueous coatings on barrier properties, namely, oil and grease, water resistance, and water vapor transmission rate, by applying coatings to solid bleached sulfate (SBS) paperboard substrate in the laboratory. The aim was to explore potential benefits of using kaolin clay to replace some of the latex binder in coating and improve or maintain various types of barrier performance and blocking without negatively influencing the other performance attributes, including heat seal. The delaminated clay with the highest shape factor provided improved barrier properties over the clays of low shape factor. The ultrafine and non-delaminated clays required significantly higher coat weights to reach satisfactory barrier properties. Coatings with different latex levels indicated that a considerably high proportion of coarse delaminated clay can be incorporated to replace latex binder, while still achieving exceptional barrier properties. Furthermore, a change in binder system was found to significantly alter the barrier properties and the role that a mineral pigment can play. The results indicate that a proper selection of binder systems for each barrier property would be required while considering the clay/latex coating systems.
Journal articles
Magazine articles
Pulp and paper mills: The original biorefineries — past performance and limitations to future opportunities, TAPPI Journal October 2023
ABSTRACT: Pulp mills have been biorefineries since the invention of the Tomlinson recovery boiler. Unfortunately, the paper industry has done a poor job explaining that concept to the general public. A number of bioproducts in everyday use have been produced by pulp mills for several decades, and new products are routinely being developed. Modern research efforts over the last couple of decades have focused on producing even more products from pulp and paper mills through capacity enhancement and the development of value-added products and liquid transportation fuels to enhance paper mill profitability. Some of these efforts, often referred to as modern biorefineries, have focused so heavily on product development that they have ignored operating and process realities that limit the transformation of pulp and paper mills from the current limited number of bioproducts produced today to economic scale production of these value-added products. In this paper, several of these limitations are addressed. In addition, there are several supply chain, marketing, product quality, and economic realities limiting the value potential for these wholesale conversions of pulp mills into multiproduct modern biorefineries. Finally, the conservative nature and capital intensity of the pulp and paper industries provide a difficult hurdle for conversion to the modern biorefinery concept. These issues are also reviewed.