Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 5,221–5,230 of 5,271 results (Duration : 0.013 seconds)
Journal articles
Open Access
ABSTRACT: This study investigates the impact of pulp screening on oxygen delignification of high lignin content kraft pulps from spruce wood. An alternative process is proposed: terminating kraft cooking at higher kappa numbers and applying oxygen deligni

ABSTRACT: This study investigates the impact of pulp screening on oxygen delignification of high lignin content kraft pulps from spruce wood. An alternative process is proposed: terminating kraft cooking at higher kappa numbers and applying oxygen delignification directly to unscreened and non-defibrated pulp. The objective is to evaluate whether this non-standard approach can maintain delignification efficiency while improving yield and reducing energy input. The findings demonstrate that screening prior to oxygen delignification is not essential for effective lignin removal or pulp quality. Similar delignification degrees and ISO brightness levels were obtained after oxygen delignification, whether it was performed on screened or unscreened pulps. Notably, the delignification rate in the oxygen stage was the same for the non-standard procedure as for pulp from the standard procedure with the reject fractionremoved prior to the oxygen stage. No significant differences were seen in fiber morphology, brightness level, orbrightness stability. The amount of total fiber charges in pulps not screened before oxygen delignification was slightly higher than in screened pulps.

Journal articles
Magazine articles
Open Access
Preparing prehydrolyzed kraft dissolving pulp via phosphotungstic acid prehydrolysis from grape branches, TAPPI Journal January 2022

ABSTRACT: Dissolving pulp was successful prepared via phosphotungstic acid (PTA) prehydrolysis kraft (PHK) cooking followed by an elementary chlorine-free (ECF) bleaching process from grape branches. The effects of prehydrolysis temperature, reaction time, and PTA concentration that potentially affect the quality of dissolving pulp product on chemical components of pulp were studied via an orthogonal experiment. The structure of lignin was activated during the PTA prehydrolysis phase, and lignin was easily removed during the following cooking process. Thus, relatively mild conditions (140°C, 100 min) can be used in the cooking process. During the prehydrolysis phase, temperature exhibited the most significant influence on the cellulose purity of the obtained pulp fiber, followed by reaction time and PTA concentration. The optimized prehydrolysis conditions were as follows: prehydrolysis temperature, 145°C; reaction time, 75 min; and PTA concentration, 1 wt%. Whether the excessively high prehydrolysis temperature or prolonging the reaction time did not favor the retention of long chain cellulose, the delignification selectivity for the cooking process could not be further improved by excessive PTA loading. Under these prehydrolysis conditions, 94.1% and 29.0% for a-cellulose content and total yield could be achieved after the given cooking and bleaching conditions, respectively. Moreover, the chemical structure and crystal form of cellulose were scarcely changed after PTA prehydrolysis, which could be confirmed by results from Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). PTA prehydrolysis could be considered as an alternative method for preparing PHK dissolving pulp under relatively mild cooking conditions.

Journal articles
Magazine articles
Open Access
Application of ATR-IR measurements to predict the deinking efficiency of UV-cured inks, TAPPI Journal January 2022

ABSTRACT: In recent years, ultraviolet (UV)-curable ink has been developed and widely used in various printing applications. However, using UV-printed products (UV prints) in recovered paper recycling causes end-product dirt specks and quality issues. A new method was developed that can distinguish UV prints from other prints by means of attenuated total reflectance infrared (ATR-IR) spectroscopy. Application of this method could allow more efficient use of UV prints as raw materials for paper recycling.First, a mill trial was performed using UV prints alone as raw materials in a deinked pulp (DIP) process. Second, test prints were made with four types of UV inks: a conventional UV ink and three different highly-sensitive UV inks. Each print sample had four levels of four-color ink coverage patterns (100%, 75%, 50%, and 25%). Next, deinkability of all prints was evaluated by laboratory experiments. Finally, each print was measured using the ATR-IR method, and the relationship between the IR spectra and deinkability was investigated. Mill trial results showed that UV prints caused more than 20 times as many dirt specks as those printed with conventional oil-based ink. There were variations in recycling performance among UV prints taken from bales used for the mill trial. Lab tests clearly revealed that not all UV-printed products lead to dirt specks. In order to clarify the factors that affected deinkability of UV prints, the print samples were investigated by lab experiments. Key findings from lab experiments include: œ The number of dirt specks larger than 250 µm in diameter increased as the ink coverage increased. œ Higher ink coverage area showed stronger intensity of ATR-IR spectral bands associated with inks. These results indicate that deinkability of UV prints could be predicted by analysis of ATR-IR spectra. œ Finally, the method was applied for assessment of recovered paper from commercial printing presses. It was confirmed that this method made it possible to distinguish easily deinkable UV prints from other UV prints. Based on these findings, we concluded that the ATR-IR method is applicable for inspection of incoming recovered paper.

Journal articles
Open Access
ABSTRACT: Lignin’s potential as a source of sustainable aromatic compounds is significant, but its utilization is currently limited by its chemical reactivity. Chemical reactivity of lignin depends on the present functional groups, such as hydroxyl, metho

ABSTRACT: Lignin’s potential as a source of sustainable aromatic compounds is significant, but its utilization is currently limited by its chemical reactivity. Chemical reactivity of lignin depends on the present functional groups, such as hydroxyl, methoxy, and carbonyl groups. Therefore, in this study, multivariate analysis-based chemometric models have been developed for rapid determination of aliphatic hydroxyl (Alp-OH) and phenolic hydroxyl (Ph-OH) groups in lignin samples. Two chemometric models, principal component regression (PCR) and partial least squares regression (PLSR), were established with Fourier transform infrared spectroscopy (FTIR) spectral data of 28 lignin samples. Both the models were developed based on raw and pretreated spectroscopic data with Savitky-Golay (S-G) filtering and standard normal variate (SNV) and multiplicative scatter correction (MSC). The predictive performance of the PLSR model is better for predicting Alp-OH (R2 = 0.94%), syringyl-OH (R2 = 0.96%), guaiacyl-OH (R2 = 0.98%), p-hydroxyphenyl (R2 = 0.93%), and total Ph-OH groups (R2 = 0.97%) with the data pretreated by MSC. Finally, the predicted results of these parameters for three new samples for the developed models are found to be very close to the estimated values by NMR.

Journal articles
Magazine articles
Open Access
The use of minerals in fiber-based packaging and pulp molding, TAPPI Journal January 2024

ABSTRACT: Minerals are widely used in the pulp and paper industry for aiding the processing, economics, and final quality of fiber-based products. Among these, calcium carbonate, talc, and kaolin are widely used as fillers, and these can have varying brightness, particle size distributions, and aspect ratios. For the molded fiber area, these minerals can raise the solids content of the pulp mixture and improve throughput and lower energy requirements for drying. Talc is also widely used as a process control agent, picking up pitch and stickies and improving productivity by lowering machine cleaning time.The replacement of single use plastic with fiber-based replacements is a global trend; however, it does come with some significant challenges, such as grease and moisture proofing. Previously, per- and polyfluoroalkyl substances (PFAS) have been used to provide functions such as water and grease repellency, but regulatory demands have seen its demise in the packaging industry. Therefore, water holdout is now generally achieved by addition of alkyl ketene dimer (AKD) sizing. Wax additives are being developed and tested as PFAS replacements for oil and grease resistance. Rather than strongly repelling lipids from the fiber surface, these PFAS alternatives restrict flow pathways and react with food oils to alter their flow characteristics to prevent penetration through the substrate. During studies incorporating both PFAS substitutes and minerals, no detrimental interactions were observed. This paper addresses the different needs of the molded fiber market by including mineral fillers in molded fiber articles and will be presented as a series of different case studies. In all studies, we show that the trends observed when mineral filler is added to molded fiber are broadly similar to those seen in conventional paper and paperboard applications. Mineral addition in all studies gave improvements in productivity and optical appearance. With its organophilic surface, hydrophobic talc had the additional advantage of pitch and sticky control, and although a small decrease in strength was always observed when filler was added, the final articles still retained sufficient strength for their particular application. This small strength reduction should be balanced against the productivity gains.

Journal articles
Magazine articles
Open Access
Experimental investigations into fold cracking of double coated barrier dispersion coatings, TAPPI Journal November 2024

ABSTRACT: The trend for replacing single-use plastics with fiber-based barrier coated board packaging has prompted a significant amount of research. There are many proposed ways of providing suitable packaging for applications like food service. Among these are dispersion coated barriers on board, as well as laminated boards that can be produced using conventional polyethylene (PE) or new biodegradable plastics. Minerals have also been shown to be suitable additives to these coatings for improving barrier performance through surface chemistry and by increasing the tortuosity of the pathway through the barrier layer. They also improve the cost effectiveness of the layer by lowering the material cost and raising the solids content, and by improving hold out of the functional layers, leading to a reduction in the amount of barrier coating needed to meet a given performance requirement. Minerals can also aid in the barrier handling in terms of rheology and reduced “stickiness,” as well as blocking of the films. When incorporated as fillers into extruded films, improved adhesion of the film to the board has been reported. One of the remaining challenges is the potential for cracking at the fold during converting and the loss of barrier performance that this can lead to. In this work, we systematically looked at the impact of mineral type and level in a dispersion coating. We assessed the differences in performance resulting from different coating application methods for the precoat layer by looking at the cracking tendency and loss of barrier functionality after folding for both the precoat alone and the final double coated sheets. Barrier results include moisture vapor transmission rate (MVTR), viscous vegetable oil, and the fluid blue stain in industrial methylated spirits (IMS) and Cobb water absorption, both before and after folding.

Journal articles
Magazine articles
Open Access
Energy saving potential of interstage screen fractionation for production of board grade BCTMP, TAPPI Journal August 2023

ABSTRACT: Over the last few decades, the continuing decline in mechanical pulp-based grades has led pulp producers to modify operations and implement measures to reduce production costs in order to stay competitive. In spite of a considerable effort to reduce energy consumption, the latter is still a major portion of production costs in the process of making bleached chemithermomechanical pulp (BCTMP). In this study, we evaluated the impact of interstage screening fractionation (ISSF) and secondary refining strategy for producing BCTMP with the objective of reducing refining energy consumption while maintaining or improving bulk and strength properties. In the first step and to establish a baseline for a mill’s existing configuration, the collected primary refined pulp and reject streams from the ISSF were refined in a high consistency (HC) refiner to target freeness levels. The accepts and refined rejects streams were recombined, and their properties were compared to those of the refined primary pulp. The results showed that, at a given freeness of 400 mL and compared to the control case (without fractionation), the ISSF using an 0.070 in. basket followed by rejects refining could lead to about 25% energy saving in the second stage HC refining. Handsheet properties showed that utilization of ISSF could produce BCTMP with higher bulk and similar average fiber length and tear index. However, a slight reduction in tensile strength was observed. In the second set of trials, the primary refined pulp and the rejects from the ISSF using the 0.070 in. basket were refined by a low-consistency (LC) refiner. The results showed that, at the same freeness of 400 mL and compared to refined primary pulp, the ISSF saved about 26% in net LC refining energy. At a specific edge load (SEL) of 0.4 J/m, the produced pulp had similar bulk and strength properties compared to those of the control sample. A higher SEL of 0.6 J/m in LC refining could further decrease net refining energy consumption; however, it also led to reduction in fiber length, bulk, and strength properties.

Journal articles
Open Access
A targeted approach to produce energy-efficient packaging materials from high-yield pulp, TAPPI Journal August 2025

ABSTRACT: Unlike fossil-based plastics, wood-based packaging materials can be produced in an ecofriendly manner using wood chip residuals from sawmills and pulpwood. To produce high-yield pulp like chemithermomechanical pulps (CTMPs) for paperboard and liquid packaging, it is crucial to reduce the electric energy consumption during fiber separation. The ultimate objective is to revolutionize paperboard production by achieving a middle-layer CTMP process that consumes less than 200 kilowatt-hours per metric ton (kWh/t), significantly improving from the current 500•600 kWh/t energy demand. Optimizing the CTMP impregnation process of sodium sulfite (Na2SO3) in wood chips is crucial for achieving uniform softening, ideally at the fiber level. The properties of the fibers are significantly affected by the content of lignin sulfonates within the walls of the fiber and the middle lamellae. In this study, we employed in-house developed X-ray fluorescence (XRF) techniques, validated by beamline measurements, to map the distribution of sulfonated lignin within fibers. It also seemed possible to enhance the surface area of lignin-rich pulp fibers while losing minimal bulk by refining them with well-optimized low consistency (LC) refining. We aimed to achieve a highly efficient separation of coniferous wood fibers by co-optimizing the sulfonation and the temperature in the preheater and chip refiner. Additionally, we explored how lignin’s softening behavior and potential crosslinking influence subsequent unit operations, including pressing, peroxide bleaching, and drying, following the defibration process. In defibration during chip refining, the maximum softening of wood fibers is preferred to maximize fiber preservation and minimize energy consumption. However, optimizing the stiffness of finished pulp fibers is preferable to reduce bulk loss during paperboard production. It can strive to optimize processes to develop stronger, lighter, and more sustainable composite packaging materials. Reducing environmental impact and electric energy can help create a more sustainable future.

Open Access
Effect of fly ash-based calcium silicate on physical properties of cardboard paper, TAPPI Journal July 2023

ABSTRACT: This work reported the possibility of using fly ash-based calcium silicate (FACS) as filler for papermaking and waste fiber to synthesize cardboard paper. The adverse effects of FACS filler on paper strength were improved by using cationic starch modification, surface size, and interlayer-filled technology. Physical property tests indicated that the increase of filler content leads to a decrease in paper strength and an increase in bulk, but at the same content, the strength properties of paper modified by cationic starch were significantly improved, and the absorption resistance was lower. The paper had better absorption resistance than the original FACS paper after surface size. In addition, the absorption resistance and strength of the interlayer filling paper were better than the original FACS-filled paper, and the absorption resistance was the best. The results support the potential use of FACS as a low-cost filler for cardboard paper production.

Open Access
Web instability in the open draw and the impact on paper machine efficiency, TAPPI Journal May 2022

ABSTRACT: Paper is most likely to break in the first open draw on a paper machine where it is unsupported, wettest, and weakest. Tension is applied to peel the web from the roll surface, as well as minimize web flutter in the open draw. The average tension is well below the breaking point and is often set by adjusting the speed difference between the press and the next machine element by visually observing the behavior of the web. However, machine direction variations caused by instabilities in the paper machine can cause tension swings that exceed the strength of the web. Measurement of the web’s release point from press rolls on pilot and commercial paper machines was used to identify the cause of tension instabilities. Variations in the speed of the paper machine drives and the work of adhesion from the press roll surface were identified as key factors. Fluctuations of paper moisture, which affects the elastic modulus and strength of the web, appear to be less important.