Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 571–580 of 1,919 results (Duration : 0.01 seconds)
Journal articles
Open Access
Drainage during roll formingâ??model validation using pilot paper machine data, TAPPI JOURNAL, July 2001, Vol. 84(7)

Drainage during roll forming—model validation using pilot paper machine data, TAPPI JOURNAL, July 2001, Vol. 84(7)

Journal articles
Open Access
Moisture permeation mechanism of latex films filled with platelike fillers, TAPPI JOURNAL, March 2001, Vol. 84(3)

Moisture permeation mechanism of latex films filled with platelike fillers, TAPPI JOURNAL, March 2001, Vol. 84(3)

Journal articles
Open Access
Rheological aspects of water based waterless inks, TAPPI JOURNAL, March 2001, Vol. 84(3)

Rheological aspects of water based waterless inks, TAPPI JOURNAL, March 2001, Vol. 84(3)

Journal articles
Open Access
The effect of mill closure on the flocculation of various retention aid chemicals, TAPPI JOURNAL, March 2001, Vol. 84(3)

The effect of mill closure on the flocculation of various retention aid chemicals, TAPPI JOURNAL, March 2001, Vol. 84(3)

Magazine articles
Open Access
The practical influence of heterogeneity on tensile accelerated creep in paper, TAPPI JOURNAL, March 2001, Vol. 84(3)

The practical influence of heterogeneity on tensile accelerated creep in paper, TAPPI JOURNAL, March 2001, Vol. 84(3)

Journal articles
Open Access
Effect of xylan on the mechanical performance of softwood kraft pulp 2D papers and 3D foams, TAPPI Journal March 2025

ABSTRACT: Pulp fibers are paramount in paper products and have lately seen emerging use in fiber foams. Xylan, an integral component in pulp fibers, is known to contribute to paper strength, but its effect on the strength of pulp fiber foams remains less explored. In this study, we investigate the role of xylan in both 2D handsheets and 3D foams. For a softwood kraft pulp, we enzymatically removed 1% from pulp fibers and added 3% xylan to them by adsorption, corresponding to approximately a decrease of a tenth and an increase of a third of the total xylan content. The mechanical properties of 2D fiber networks, i.e., handsheets, made using the xylan-enriched pulp improved, particularly regarding tensile strength and Young’s modulus; however, the decrease in mechanical properties of handsheets made from enzymatically- treated xylan-depleted pulp was more pronounced. In 3D networks • pulp fiber foams, much less fiber-fiber contacts formed, and thus the mechanical properties were not as much influenced by removal of xylan. Furthermore, the presence of the required surfactant on the fibers, acting as debonding agent, overshadows any positive effect xylan might have on fiber-fiber bonding. We propose that the improved mechanical properties for the sheets result from a combination of an increased number of fiber-fiber bonds and higher sheet density, while the deterioration in mechanical properties of handsheets comprising enzymatically-treated fibers is caused by the opposite effect.

Journal articles
Magazine articles
Open Access
Development of converging-diverging multi-jet nozzles for molten smelt shattering in kraft recovery boilers, TAPPI Journal March 2021

ABSTRACT: The effective shattering of molten smelt is highly desired in recovery boiler systems. Ideally, shatter jet nozzle designs should: i) generate high shattering energy; ii) create a wide coverage; and iii) minimize steam consumption. This study proposes a novel converging-diverging multi-jet nozzle design to achieve these goals. A laboratory setup was established, and the nozzle performance was evaluated by generating jet pressure profiles from the measurement of a pitot tube array. The results show that the shatter jet strength is greater with a large throat diameter, high inlet pressure, and a short distance between the nozzle exit and impingement position. Increasing the number of orifices generates a wider jet coverage, and the distance between the orifices should be limited to avoid the formation of a low-pressure region between the orifices. The study also demonstrates that an optimized converging-diverging multi-jet nozzle significantly outperformed a conventional shatter jet nozzle by achieving higher energy and wider coverage while consuming less steam.

Journal articles
Magazine articles
Open Access
Impact of different calendering strategies on barrier coating pickup, TAPPI Journal November 2023

ABSTRACT: Paper was pre-calendered in a pilot scale configuration with a traditional soft nip calender and a metal belt calender. All calendering strategies reduced surface roughness and permeability of the samples, but different strategies affected the surface roughness and permeability differently. The metal belt calender seemed to have a larger effect on the large-scale variations compared to the soft nip calender. Six test points from the pilot calendered papers were chosen for laboratory coating studies. Uncalendered paper was included as reference samples. The calendered samples and the reference were pre-coated with a regular pigmented coating consisting of a ground calcium carbonate (GCC) pigment and a styrene acrylate (SA) latex. Both uncoated and pre-coated substrates were barrier coated with a polyvinyl alcohol (PVOH) in one and two layers. The coating pickup was determined gravimetrically, and the barrier properties were evaluated with TAPPI Standard Test Method T 454 grease resistance test. All samples needed two PVOH coating layers to form a grease barrier. The uncalendered sheets showed the best results with one coating layer, but this was at the expense of a higher coating pickup compared to the calendered sheets. The barrier coating pickup could be reduced by a combination of high temperature metal belt calendering and pre-coating. The high temperature and long residence time in the nip enabled plasticization of the fibers. This led to an irreversible deformation, even after water application. This meant that the smoothness obtained during calendering would be less affected by water-induced roughening during the coating operation.

Journal articles
Magazine articles
Open Access
Use of kaolin clay in aqueous barrier coating applications, TAPPI Journal November 2023

ABSTRACT: Paper-based packaging with barrier effect, as opposed to single use plastics, is gaining more prominence for sustainability reasons. At the same time, latex- or biopolymer-based aqueous barrier coating dispersions are increasingly being adopted as a better alternative to the traditional barrier coating materials, such as wax, surface active chemicals, and polyethylene. In this work, studies were performed to determine the influence of different kaolin clays in latex binder-based aqueous coatings on barrier properties, namely, oil and grease, water resistance, and water vapor transmission rate, by applying coatings to solid bleached sulfate (SBS) paperboard substrate in the laboratory. The aim was to explore potential benefits of using kaolin clay to replace some of the latex binder in coating and improve or maintain various types of barrier performance and blocking without negatively influencing the other performance attributes, including heat seal. The delaminated clay with the highest shape factor provided improved barrier properties over the clays of low shape factor. The ultrafine and non-delaminated clays required significantly higher coat weights to reach satisfactory barrier properties. Coatings with different latex levels indicated that a considerably high proportion of coarse delaminated clay can be incorporated to replace latex binder, while still achieving exceptional barrier properties. Furthermore, a change in binder system was found to significantly alter the barrier properties and the role that a mineral pigment can play. The results indicate that a proper selection of binder systems for each barrier property would be required while considering the clay/latex coating systems.

Journal articles
Magazine articles
Open Access
Effects of different ammonium lignosulfonate contents on the crystallization, rheological behaviors, and thermal and mechanical properties of ethylene propylene diene monomer/polypropylene/ammonium lignosulfonate composites, TAPPI Journal January 2020

ABSTRACT: Thermoplastic elastomer (TPE), made from ethylene propylene diene monomer (EPDM) and polypropylene (PP) based on reactive blending, has an excellent processing performance and characteristics and a wide range of applications. However, there are currently no reports in the literature regarding the usage of TPE in making composite boards. In this paper, EPDM, PP, and ammonium lignosulfonate (AL) were used as the raw materials, polyethylene wax was used as the plasticizer, and a dicumyl peroxide vulcanization system with dynamic vulcanization was used to make a new kind of composite material. This research studied the influences of the AL contents on the crystallization behaviors, rheological properties, thermal properties, and mechanical properties of the composites. The results showed that the AL content had a noticeable impact on the performance of the composite board. Accordingly, this kind of composite material can be used as an elastomer material for the core layer of laminated flooring.