Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
An analytical method to quantitatively determine the amount of polyamide epichlorohydrin (PAE) in paperboard and white water, TAPPI Journal February 2023,
ABSTRACT: Polyamide epichlorohydrin (PAE) is a permanent wet strength resin. When applied to paperboard, some amount of resin is retained in the sheet, and some is lost to the white water. An analytical method for quantifying the amount of PAE retained in the sheet and lost into the white water has been developed. This method hydrolyzes the PAE to adipic acid, which in turn is derivatized to diethyl adipate and quantified by pyrolysis gas chromatography•mass spectrometry (pyGCMS). In addition, the hydrolysis conditions of the PAE were studied by the Taguchi approach, and PAE material balances around the dry sheet and white water for 3 and 6 lb/ton PAE applications have been performed. The PAE resin recovery was 95.4% with 65.0% in the sheet for the 3 lb/ton PAE-charged paper-board, and the recovery was 96.7% with 36.1% in the sheet for the 6 lb/ton PAE-charged paperboard.
Journal articles
Magazine articles
Evaluating the effect of recovery boiler operation on green liquor dregs concentration using multivariate analysis, TAPPI Journal June 2023
ABSTRACT: Poor settling and filterability of green liquor dregs has been a persistent problem in many kraft pulp mills. While the concentration and settling/filtering behaviors of dregs are expected to be related to how black liquor is burned in recovery boilers, the effect of boiler operation is not well understood. A systematic study was conducted to examine how recovery boiler operation may affect the dregs concentration in the raw green liquor (RGL) at three kraft pulp mills using SIMCA, a multivariate data analysis (MVDA) program. Daily average boiler operating data from three kraft mills were analyzed over a 3-year period. Results of both principal component analysis (PCA) and partial least squares regression (PLS) suggest that the main boiler operations contributing to high dregs concentrations in RGL are low liquor firing load, low bed temperature, poor char burning, and unstable char bed.
Journal articles
Magazine articles
Water chemistry challenges in pulping and papermaking • fundamentals and practical insights: Part 2: Conductivity, charge, and hardness, TAPPI Journal June 2023
ABSTRACT: Although water is essential to the papermaking process, papermakers often overlook its importance and focus on fibers, fillers, and chemical additives. A better understanding of water properties and chemical interactions associated with water at the wet end leads to a sound foundation for high-quality paper production and smooth operation. Water is an excellent solvent for ionic substances, both organic and inorganic. These substances contribute to system conductivity, charge, and hardness and significantly impact the papermaking process. Part 1 of this paper, published in TAPPI J. 21(6): 313(2022), discussed fundamental water properties, water chemistry, and the impact of pH on pulping and papermaking operations. In this paper, we review definitions, sources, and the typical symptoms of the effect of conductivity, charge, and hardness on the productivity of the papermaking process. Sources of conductivity, charge, and hardness impacting these factors, measurement methods, and available correction strategies for their control are also discussed.
Journal articles
Magazine articles
Combatting lime kiln ringing problems at the Arauco Constitución mill, TAPPI Journal July 2020
ABSTRACT: The lime kiln at the Arauco Constitución mill experienced severe ringing problems requiring it to be shut down for ring removal every 3 to 6 months. The mill controlled the problems by blasting ring deposits off during operation with its existing industrial shotgun and a newly installed Cardox liquid carbon dioxide (CO2) cartridge system. Various ring blasting procedures were tested to determine the optimum ring location and thickness to blast; the optimum depth to insert the CO2 cartridge into the kiln; and the most effective blasting frequency and sequence to employ. The best strategy was found to be the weekly blasting operation that alternated between the liquid CO2 cartridge and the industrial shotgun, with the CO2 cartridge inserted into the ring mass, 20 cm (8 in.) away from the refractory brick surface, and the shotgun aimed at rings at about 28 m (92 ft) from the kiln discharge end. With each blasting event removing considerably more rings than before, it takes a longer time for rings to rebuild, allowing the kiln to run continuously between annual maintenance shutdowns with only a few short (< 4 h) downtimes for ring removal. This substantially reduces the costs associated with ring removal and lime replacement during unscheduled shutdowns.
Journal articles
Magazine articles
Editoral: Investing in the future: Writing and peer-reviewing for TAPPI Journal, TAPPI Journal July 2024
ABSTRACT: Those who actively participate in TAPPI realize how much there is to gain from the networking, educational resources, career development, and other opportunities that come with this involvement. One important opportunity is the ability to share your work and expertise with others in your field, and an excellent way to do this is by taking part in the TAPPI Journal peer-review process, either as an author or a reviewer or both.
Journal articles
Magazine articles
Factors affecting deposit formation in foul condensate stripping systems, TAPPI Journal June 2024
ABSTRACT: In kraft pulp mills, foul condensates are often steam-stripped to produce clean condensate for use as process water. The formation of organic deposits in the stripped condensate is a common problem. A systematic study was conducted to examine the deposit composition and the most likely operating parameters responsible for stripped condensate contamination experienced at a kraft mill in Brazil. Daily averaged data of 170 operating parameters over a 15-month period were analyzed by means of multivariate discriminant analysis and random forest classification analysis. The results showed that the deposit formation is related to high temperature, pressure, and dry solids operations in various evaporator effects. These conditions, combined with the poor demisting efficiency in these effects, may have increased black liquor carryover mist in the vapor. Deposit formation also appeared to be related to increased throughput of the foul condensate stripping system and increased pressure in the stripper. Results of Fourier transform infrared spectroscopy (FTIR) and pyrolysis-gas chromatography mass spectrometry (Py-GCMS) analyses show that the deposit consists of mostly organic matter that likely originated from wood extractives and lignin.
Journal articles
Magazine articles
Evaluation of folding effects on coating damage, TAPPI Journal November 2024
ABSTRACT: Barrier coatings on paperboard need to maintain integrity during converting and end-use for effective barrier performance. Folding is one of the most common deformations during converting; however, factors that affect damage during folding are not well defined. This is partly because methods to fold specimens and characterize damage are not standardized and the results are generally not transferable. In this work, we describe a method to fold paper specimens precisely and reproducibly. The keys to folding include using a defined geometry and controlled deformation. Multiple methods can be used to quantify damage; in this case, we use differences in permeability as a measure of how the coating becomes more open. Damage is sensitive to the degree of compression after the initial folding. Using a shim for support provides a defined amount of compression and minimizes the sensitivity to the applied pressure.
Journal articles
Magazine articles
Calender barring review with experiences, TAPPI Journal July 2022
ABSTRACT: Excessive calender vibration affects all styles of calender stacks from single to multi-nip, all hard rolls, or a combination of hard and soft rolls. Calender vibration can be forced vibration or self-excited vibration. Forced vibration occurs at the first few harmonics of the calender roll rotational speeds and is caused by imbalance, misalignment, eccentricity, etc. Self-excited vibration, the focus of this paper, occurs at higher frequencies. Feedback paths for self-excited vibration must be understood in order to ameliorate the problem. This is presented in the context of the historical development of the theory of self-excited feedback mechanisms, followed by a survey of self-excited feedback mechanisms in various types of calender stacks. Methodology to determine which feed-back path is present and techniques to control or eliminate the resulting vibration follow. To obtain a flavor of the types of problems faced and practical remedial actions, a variety of experiences with barring issues are provided.
Journal articles
Magazine articles
Research on improving the basis weight measurement accuracy of tissue paper based on PSO-BP neural network, TAPPI Journal October 2022
ABSTRACT: The near-infrared (NIR) sensor can be used for measuring the basis weight and moisture of tissue paper, but the measurement accuracy is not ideal for this paper grade. The weight range of the tissue is 10~30 g/m2, indicating that it is a low gram weight paper. The temperature and humidity of the production environment significantly impact an NIR sensor. This paper focuses on improving the measurement accuracy of tissue paper basis weight. In order to reduce the influences of temperature and humidity, a mathematical model based on a particle swarm optimization back propagation (PSO-BP) neural network is proposed. In comparison with multiple linear regression measurement models, the basis weight measurement error with the PSO-BP model is within ± 0.5 g/m2. This model can effectively improve the measurement accuracy and has a good effect on overcoming the basis weight nonlinear effect caused by the changes in ambient temperature and humidity.
Journal articles
Magazine articles
Innovative technology for making paper from poor fibers
Innovative technology for making improved paper from the poorest fibers, TAPPI JOURNAL November 2017