Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 581–590 of 883 results (Duration : 0.013 seconds)
Journal articles
Magazine articles
Open Access
Application of foamed additives to the surface of wet handsheets, TAPPI Journal January 2021

ABSTRACT: We explored the application of foamed wet-end additives onto wet handsheets to qualify our method of application and to demonstrate the method’s usefulness for prescreening additives and foaming agents for packaging applications.We modified a laboratory drawdown coating machine to allow coating of wet handsheets with foamed additives. Initial sheet solids were adjusted to a target of 8%•25% by vacuum. Foam layer thickness was set mechanically. After application, the foamed additives were drawn into the sheet with vacuum. The additive dosage was adjusted by altering its concentration within the foaming formulation. We evaluated more than 100 foaming agents and 10 strength additives, comparing wet-end and foam-assisted addition with no addition on recycled linerboard and virgin linerboard furnish. Foam-assisted addition typically displayed a much steeper dose-response curve and much higher maximum strength levels than wet-end addition. Our results suggest potential target applications for this technology, such as lightweighting, and improved strength performance in mills with relatively closed water systems, where strength aids added into the wet end are adversely influenced by accumulation of inorganic ions and organic species.

Journal articles
Magazine articles
Open Access
The effect of contact time between CPAM and colloidal silica on the flocculation behavior in the approach flow, TAPPI Journal January 2021

ABSTRACT: Multicomponent wet-end systems have become increasingly common in papermaking, with the objective of improving the retention-formation-dewatering relationship. It is quite common to use at least a cationic polymer, often in combination with an anionic microparticle. In some cases, a fixative is also used. However, there is still debate on the optimal implementation of these systems. In particular, optimizing the contact time of the cationic polymer prior to addition of the anionic microparticle is still poorly understood. In this work, we investigate the effect of the contact time of a cationic polyacrylamide (CPAM) prior to addition of colloidal silica on the flocculation response in a flowing fiber suspension. The effect of using a fixative is also investigated. Focused beam reflectance measurements (FBRM) are combined with zeta-potential measurements for optimizing the addition levels of a two- and three-component system, as well as for elucidating the effect of contact time on CPAM performance. Trials are then performed on a pilot scale flow loop, where the time between addition of these two components is varied and the resulting flocculation response is characterized using high-speed filming and image analysis techniques. It is shown that the efficacy of CPAM can be improved through use of a fixative and that a longer CPAM contact time may be beneficial in terms of immediate flocculation; however, hydrodynamic shear tends to dominate the flocculation response regardless of contact time due to floc rupture.

Journal articles
Magazine articles
Open Access
New learnings and strategies for meeting future recovery boiler particulate emission limits with existing electrostatic precipitators, TAPPI Journal June 2021

ABSTRACT: It is foreseeable that recovery boiler particulate emission limits in the United States and Canada will continue to get more stringent with time. Because of this, continued improvement of emission control equipment, as well as a better understanding of how operating parameters affect performance, are necessary. Although electrostatic precipitators (ESPs) are often viewed as a mature technology, many improvements in ESP technology continue to be developed. In recent years, academic efforts have improved the understanding of recovery boiler operating conditions on ESP performance. Additionally, advancements in materials, power supplies, and design continue to improve the efficiency and reliability of ESPs.This paper discusses how recovery boiler and electrostatic precipitator (ESP) operating factors affect ESP perfor-mance based on process simulations and practical experience, and how these learnings can be implemented to improve future operation of existing ESPs.

Journal articles
Magazine articles
Open Access
Setting priorities in CNF particle size measurement: What is needed vs. what is feasible, TAPPI Journal February 2023

ABSTRACT: Measuring the size of cellulose nanomaterials can be challenging, especially in the case of branched and entangled cellulose nanofibrils (CNFs). The International Organization for Standardization, Technical Committee 6, Task Group 1—Cellulosic Nanomaterials, is exploring opportunities to develop standard methods for the measurement of CNF particle size and particle size distribution. This paper presents a summary of the available measuring techniques, responses from a survey on the measurement needs of CNF companies and researchers, and outcomes from an international workshop on cellulose nanofibril measurement and standardization. Standardization needs differed among groups, with Japanese companies mostly requiring measurements for product specification and production control, and other companies mostly needing measurements for safety/regulatory purposes and for grade definitions in patents. Among all the companies, average length and width with percen-tiles (D(10), D(50), D(90)) were the most desired measurands. Workshop participants concurred that defining the location(s) on the CNF at which to measure the width and the length is an urgent and complex question. They also agreed that methods are needed for rapid particle size measurement at the nanoscale. Our recommendation within ISO is to start work to revise the definition of CNFs and develop sample preparation and measurement guidelines. It was also recommended that further research be done to reproducibly prepare hierarchical branched CNF structures and characterize them, develop automated image analysis for hierarchical branched CNF structures, and develop a classification system encompassing measurements at multiple size ranges from micro- to nanoscale to fully characterize and distinguish CNF samples.

Journal articles
Magazine articles
Open Access
Editorial: New research signals promising future for wet-end options, TAPPI Journal January 2023

ABSTRACT: Welcome to the 2023 special Wet-End Technology issue of TAPPI Journal. All of the papers published in this issue reflect the latest information on wet-end chemistry and are based on preentations from the wet-end chemistry sessions at TAPPICon2022.

Journal articles
Magazine articles
Open Access
New opportunities in the paper and nonwovens industries with foam-assisted web forming and chemical application, TAPPI Journal January 2023

ABSTRACT: Foam-assisted web forming and chemical application technologies have great potential to improve manufacturing efficiency and product quality in the paper and nonwovens industries. In this study, the benefits of foam forming and foam-assisted application of chemicals were demonstrated in a pilot machine trial. Uniform high-bulk webs of unrefined bleached softwood kraft pulp (BSKP) and viscose fibers were manufactured by foam forming. It was shown that foam formed low-grammage and high-bulk viscose fiber webs can be strengthened by foam-assisted application of latex onto the wet web. Correspondingly, foam-assisted application of carboxymethyl cellulose (CMC) and anionic polyacrylamide (A-PAM) improved the strength of the foam formed low-grammage and high-bulk BSKP web. Overall, the pilot machine results indicated that material cost savings could be achieved and a high-performance product could be manufactured with foam-based technologies.

Journal articles
Magazine articles
Open Access
Effect of fly ash-based calcium silicate on physical properties of cardboard paper, TAPPI Journal July 2023

ABSTRACT: This work reported the possibility of using fly ash-based calcium silicate (FACS) as filler for papermaking and waste fiber to synthesize cardboard paper. The adverse effects of FACS filler on paper strength were improved by using cationic starch modification, surface size, and interlayer-filled technology. Physical property tests indicated that the increase of filler content leads to a decrease in paper strength and an increase in bulk, but at the same content, the strength properties of paper modified by cationic starch were significantly improved, and the absorption resistance was lower. The paper had better absorption resistance than the original FACS paper after surface size. In addition, the absorption resistance and strength of the interlayer filling paper were better than the original FACS-filled paper, and the absorption resistance was the best. The results support the potential use of FACS as a low-cost filler for cardboard paper production.

Journal articles
Magazine articles
Open Access
Editorial: Progress continues in recovery cycle optimization, TAPPI Journal March 2023

ABSTRACT: Travel came to a halt just before the 2020 International Chemical Recovery Conference (ICRC) was to take place in Brazil. The ICRC was to be co-hosted in 2021 with TAPPI PEERS, but PEERS was eventually cancelled for that year as travel for many had not resumed. In early 2022, The University of Toronto hosted an online meeting in order to bring together the community of researchers and industrial engineers for an ICRC event. At this event, 19 research papers were presented.

Journal articles
Magazine articles
Open Access
On the diagnosis of a fouling condition in a kraft recovery boiler: combining process knowledge and data-based insights, TAPPI Journal March 2023

ABSTRACT: Fouling is still a major challenge for the operation of kraft recovery boilers. This problem is caused by accumulation of ash deposits on the surfaces of heat exchangers in the upper part of the boiler over time. The first consequence is the reduction of steam production due to loss of heat transfer and, finally, the shutdown of the boiler due to clogging. The present work investigated the operational condition of a modern kraft boiler under a critical fouling condition. This boiler had even faced a manual cleaning due to a clogging event. This analysis combined process knowledge, plant team experience, and a data-driven approach, given the complexity of the process. In this sense, historical data covering this critical period of operation were collected. After a cleaning procedure, they were used to obtain a predictive neural network model for the flue gas pressure drop in the boiler bank, which is an indirect measure of ash deposit accumulation. Once validated, it was used for sensitivity analysis, with the aim of quantifying the effects of the model inputs. Five variables out of eighteen accounted for nearly 60% of the total effect on pressure drop. Namely, primary air temperature (21.6% of the total effect) and flow rate (11.1%), black liquor flow rate (9.9%) and temperature (8.4%), and white liquor sulfidity (8.6%). The analysis of these results mainly suggested an excess of carryover, which composes the ash deposits. Recommended actions to mitigate the fouling condition involved adjustments to the primary air system before the more drastic solution of reducing the boiler load.

Journal articles
Magazine articles
Open Access
The winding mechanics of laminate webs, TAPPI Journal February 2020

ABSTRACT: Models that describe the residual stresses due to winding single-layer webs at the end of roll-to-roll manufacturing machines are mature. These models have been used to reduce or avoid defects that are due to winding. Many laminated products exist where two or more webs have been joined to form a thicker composite web. The properties of the web layers provide a unique functionality to the product being manufactured. No laminate winding models exist in the literature. This paper will focus on the development of a laminate winding model and laboratory test verification of the model.