Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 681–690 of 891 results (Duration : 0.009 seconds)
Journal articles
Magazine articles
Open Access
SCC susceptibility of chromized type 409 stainless steel in alkaline chloride solutions at ambient temperature and pressure, TAPPI Journal August 2023

ABSTRACT: Biomass hydrothermal liquefaction (HTL) is operated in a harsh reaction medium that contains hot pressurized water, inorganic acidic or basic catalyst, and inorganic/organic corrosive components released during the conversion. Candidate alloys for this application require suitable resistance to both corrosion and stress corrosion cracking (SCC) to withstand the HTL process conditions (250°C•374°C and 4•22 MPa). Ferritic iron-chromium (Fe-Cr) steels are more prone to corrosion but less susceptible to SCC compared to austenitic iron-chromium-nickel (Fe-Cr-Ni) steels. Chromizing can significantly reduce corrosion of Type 409 stainless steel (Fe-11Cr) in a simulated aqueous HTL solution. The objective of this study is to determine the SCC susceptibility of chromized Type 409 stainless steel, relative to the bare (non-chromized) case. The slow strain rate testing (SSRT) technique was used for this purpose. For simplicity of experimentation, SSRT was conducted using simulated HTL water containing 800 ppm potassium chloride (KCl), 1 M potassium carbonate (K2CO3), and 10 wt% acetic acid at ambient temperature and pressure. Complementary potentiodynamic polarization measurements and surface analysis by X-ray photoelectron spectros-copy (XPS) were also made to help interpret the SSRT results. The SSRT results show no significant difference in SCC susceptibility, regardless of the starting surface. Thus, chromizing, while significantly reducing the corrosion of Type 409 stainless steel, does not adversely affect SCC susceptibility, at least under the conditions tested.

Journal articles
Magazine articles
Open Access
Effects of metal surface morphology on deposition behavior of microstickies from papermaking white water, TAPPI Journal July 2023

ABSTRACT: Deposition of small adhesive particles, called microstickies, onto pulp processing equipment and paper machines causes quality and operational problems for recycling mills. The factors that control deposition of microstickies onto surfaces of metal parts remain unclear. In this work, aluminum surfaces with a range of surface roughness were exposed to slurries containing microstickies. The deposition results showed that flat surfaces promote the aggregation and deposition of microstickies particles. Uneven surfaces tended to favor deposition of smaller microstickies, 0.2•1 µm, which may be related to greater contact area presented by the rougher surface. This work provides insights into the deposition of microstickies.

Journal articles
Magazine articles
Open Access
Co-pulping of Trewia nudiflora and Trema orientalis, TAPPI Journal June 2023

ABSTRACT: Trewia nudiflora, a fast-growing species, was evaluated as a pulpwood. The a-cellulose content of this species was 40.4% with a Klason lignin of 21.5%. It was characterized by shorter fibers with a thin cell wall. The pulp yield was 40% with a kappa number of 16 at the conditions of 18% active alkali charge and 30% sulfidity for 2 h cooking at 170°C. T. nudiflora was similar to Trema orientalis in anatomical, morphological, and chemical composition; therefore, mixed chips at a 50:50 mixture ratio were cooked under optimum conditions. The pulp yield of mixed chip cooking was 45.4% with a kappa number of 19.4. The tensile and tear index of T. nudiflora pulps were 64.8 Nœm/g and 11.5 kPaœm2/g at 35 °SR, respectively. The mixed chips, T. nudiflora, and T. orientalis pulps showed above 81% brightness when bleached by D0(EP)D1 sequence using 20 kg chlorine dioxide (ClO2)/ton of pulp.

Journal articles
Magazine articles
Open Access
Editorial: The innovation engine and the forest products industry value chain, TAPPI Journal October 2023

ABSTRACT: The forest products industry (FPI • pulp, paper, paperboard, building products, allied products, and byproducts) has been continuously innovating as it manufactures and delivers value-added products to consumers worldwide. Integrated pulp and paper mills produce pulp, paper, paperboard, and byproducts like turpentine, tall oil, methanol, lignin, and other chemicals.

Journal articles
Magazine articles
Open Access
Editorial: The next phase of research in academia and industry, TAPPI Journal September 2023

ABSTRACT: The pulp, paper, and textile sectors have contrib-uted to lifestyle improvements for people with the development and commercialization of products like toilet tissue, facial wipes, diapers, and feminine hygiene products, to name a few. Research and development (R&D) efforts in these sectors are critical now more than ever due to the need for healthcare and lifesaving products, as became evident with the COVID-19 pandemic. Additionally, the need to meet net-zero carbon goals and the necessity to revive manufacturing in devel-oped economies clearly emphasize the requirement to ex-amine the R&D landscape. Academia, industry, and governments have respective roles to play in this field.

Journal articles
Magazine articles
Open Access
A new and quick testing method for evaluating commercial OCC recycled pulp, TAPPI Journal July 2024

ABSTRACT: In this paper, a new and quick testing method for evaluating commercial old corrugated cardboard/containers (OCC) pulp was developed and used by a large Chinese boxboard manufacturer for quality control of imported OCC pulp.

Journal articles
Magazine articles
Open Access
Optimizing OCC refining with defloccing, TAPPI Journal April 2025

ABSTRACT: Subjecting pulp to a high shear zone immediately after refining results in more efficient refining. This phenomenon was originally observed to benefit softwood pulp refining. It was attributed to floc reduction based on floc measurements in mill refiners and the observation of reduced headbox plugging. Hence, this phenomenon has been termed “defloccing.” The present work shows this technology also benefits refining of North American old corrugated containers (OCC). The combined results of several mill trials with OCC defloccing demonstrate the interactions between OCC refining intensity, defloccing technology, and other state-of-the-art refining improvements. At the same refining intensity, defloccing OCC on 100% recycled machines increases OCC refining efficiency by 15%, with greater efficiency improvement on machines that use softwood as well as OCC. Furthermore, it is shown that the benefits of defloccing are additive to refining improvements made in the refining zone of a refiner plate. Most OCC refiner plate designs can therefore benefit from the addition of a defloccing feature.

Magazine articles
Open Access
Leveraging mill-wide big data sets for process and qualityimprovement in paperboard production, TAPPI Journal December 2024

Authors: Jianzhong Fu and Peter W. Hart | TAPPI J. 15(5): 309(2016) - ABSTRACT: The MWV mill in Covington, VA, USA, experienced a long term trend of increasing episodes of paper indents that resulted in significant quantities of internal rejects and production downtime. When traditional troubleshooting techniques failed to resolve the problem, big data analysis techniques were employed to help deter-mine root causes of this negative and increasingly frequent situation. Nearly 6000 operating variables were selected for a deep dive, multi-year analysis after reviewing mill-wide process logs and 60000+ PI tags (data points) collected from one of the major data historian systems at the MWV Covington mill. Nine billion data points were collected from November 2011 to August 2014. Strategies and methods were developed to format, clean, classify, and sort the various data sets to compensate for process lag time and to align timestamps, as well as to rank potential causes or indicators. GE Intelligent Platforms software was employed to develop decision trees for root cause analysis. Insights and possible correlations that were previously invisible or ignored were obtained across the mill, from pulp-ing, bleaching, and chemical recovery to the papermaking process. Several findings led the mill to revise selected process targets and to reconsider a step change in the drying process. These changes have exhibited significant impacts on the mill’s product quality, cost, and market performance. Mill-wide communications of the identified results helped transform the findings into executable actions. Several projects were initiated.

Journal articles
Magazine articles
Open Access
Wheat straw as an alternative pulp fiber, TAPPI Journal December 2024

Author: Peter W. Hart | TAPPI J. 19(1): 41(2020) - ABSTRACT: The desire to market sustainable packaging materials has led to an interest in the use of various fiber types as a raw material. It has been suggested that the use of annual crops for partial replacement of wood fiber would result in more sustainable products. Several life cycle analyses (LCA) have been performed to evaluate these claims. These LCAs provided conflicting and contradictory results because of the local conditions and the specific pulping processes investigated. Selected LCAs are reviewed and the underlying reasons for these conflicting results are analyzed.

Journal articles
Magazine articles
Open Access
Review of coating cracking and barrier integrity on paperboard substrates, TAPPI JournalDecember 2024

Authors: Joel C. Panek and Peter W. Hart | TAPPI J. 21(11): 589(2022) - ABSTRACT: Barrier packaging formats are major growth areas for the pulp and paper industry. It is technically challenging to maintain barrier properties during converting and end-use applications. Improved manufacturing capabilities and coating formulation knowledge will help maintain barrier integrity and enable growth of barrier products in challenging applications. These improvements will accelerate product development and commercialization, and allow faster response to product performance issues such as cracking. The literature on coating cracking provides knowledge mostly on the effects of coating formulations and to a lesser extent on substrate effects. Despite a large number of publications dedicated to coating failures, the approach to improve coating cracking remains empirical, and the transferability between studies and to real life applications has not been well established. Model development that successfully predicts commercial performance is in its infancy. However, some of these simplified models do a fairly good job predicting experimental data. The current work reviews the state of understanding as regards coating and barrier cracking and highlights the need for more research on cracking and barrier integrity.