Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Modeling and parameter optimization of the papermaking processes by using regression tree model and full factorial design, TAPPI Journal February 2021
ABSTRACT: One of the major challenges in the pulp and paper industry is taking advantage of the large amount of data generated through its processes in order to develop models for optimization purposes, mainly in the papermaking, where the current practice for solving optimization problems is the error-proofing method. First, the multiple linear regression technique is applied to find the variables that affect the output pressure controlling the gap of the paper sheet between the rod sizer and spooner sections, which is the main cause of paper breaks. As a measure to determine the predictive capacity of the adjusted model, the coefficient of determination (R2) and s values for the output pressure were considered, while the variance inflation factor was used to identify and eliminate the collinearity problem. Considering the same amount of data available by using machine learning, the regression tree was the best model based on the root mean square error (RSME) and R2. To find the optimal operating conditions using the regression tree model as source of output pressure measurement, a full factorial design was developed. Using an alpha level of 5%, findings show that linear regression and the regression tree model found only four independent variables as significant; thus, the regression tree model demonstrated a clear advantage over the linear regression model alone by improving operating conditions and demonstrating less variability in output pressure. Furthermore, in the present work, it was demonstrated that the adjusted models with good predictive capacity can be used to design noninvasive experiments and obtain.
Journal articles
Magazine articles
Preparation of regenerated cellulose from rice straw lignocellulosic waste and its use for reinforced paper products, TAPPI Journal July 2021
ABSTRACT: Rice straw waste is a lignocellulosic waste produced by farmers in large quantities. In this study, regenerated cellulose (RC) from rice straw was prepared by dissolving rice straw holocellulose (HC) in NaOH/Urea/Thio-urea/Water solution by the freeze-thawing process. The crystallinity index of RC was calculated at 31%, which is out of the crystallinity range of 39%•69% that has been previously suggested.The study indicated that the RC is amorphous with a low degree of polymerization (638) and higher hydroxyl group content as compared to HC. The fiber length of RC was found to be 26.7% shorter; however, the width of RC was 21.2% higher as compared to HC. Reduced kinked fiber content was observed in the fraction of RC (18.3%) as compared with HC (39.1%), and a higher curl index of fiber was observed more so in HC (10.5%) than RC (5.6%). Because of the regeneration process, the fiber length was reduced and a fines element content of about 96% was observed in RC compared to the initial fines content of HC (56.9%). Irrespective of the high fines element content of RC, the composite paper of rice straw bleached pulp and RC fibers was developed with an increase in the tensile index from 41.4 N.m/g to 71.2 N.m/g and an increase in the burst index from 4.7 kPa.m2/g to 5.3 kPa.m2/g with the addition of 5% and 15% RC, respectively. However, enhanced tear index of paper was observed up to 5% and then it declined upon further addition of RC. The study revealed that regenerated cellulose can be used as a strength additive to overcome the shortcomings of low mechanical properties in paper products.
Journal articles
Magazine articles
Lignin carbohydrate complex studies during kraft pulping for producing paper grade pulp from birch, TAPPI Journal September 2020
ABSTRACT: Paper grade pulp production across the globe is dominated by the kraft process using different lignocellulosic raw materials. Delignification is achieved around 90% using different chemical treatments. A bottleneck for complete delignification is the presence of residual covalent bonds that prevail between lignin and carbohydrate even after severe chemical pulping and oxygen delignification steps. Different covalent bonds are present in native wood that sustain drastic pulping conditions. In this study, 100% birch wood was used for producing paper grade pulp, and the lignin carbohydrate bonds were analyzed at different stages of the kraft cook. The lignin carbohydrate bonds that were responsible for residual lignin retention in unbleached pulp were compared and analyzed with the original lignin-carbohydrate complex (LCC) bonds in native birch wood. It was shown that lignin remaining after pulping and oxygen delignification was mainly bound to xylan, whereas the lignin bound to glucomannan was for the most part degraded.
Journal articles
Magazine articles
A fast and non-destructive alternative to the burnout method for paperboard quality inspections using phase-contrast X-ray imaging, TAPPI Journal February 2023
ABSTRACT: An X-ray based quality inspection method for paperboard was implemented and tested as a fast and non-destructive alternative to the burnout method. An argument against X-ray imaging for inspection of paper and paperboard has been that X-ray absorption is low in paper. To overcome this limitation, we used phase-contrast X-ray imaging (PCXI), which gives higher contrast than conventional attenuation-based imaging for low-absorbing materials such as paper. The suggested PCXI method was applied to previously prepared and quality rated samples using the burnout method. A strong similarity between the burnout images and the PCXI images was observed. In conclusion, further development of the phase-contrast X-ray method would provide an interesting option for replacing or complementing the standard burnout method.
Journal articles
Magazine articles
Effects of metal surface morphology on deposition behavior of microstickies from papermaking white water, TAPPI Journal July 2023
ABSTRACT: Deposition of small adhesive particles, called microstickies, onto pulp processing equipment and paper machines causes quality and operational problems for recycling mills. The factors that control deposition of microstickies onto surfaces of metal parts remain unclear. In this work, aluminum surfaces with a range of surface roughness were exposed to slurries containing microstickies. The deposition results showed that flat surfaces promote the aggregation and deposition of microstickies particles. Uneven surfaces tended to favor deposition of smaller microstickies, 0.2•1 µm, which may be related to greater contact area presented by the rougher surface. This work provides insights into the deposition of microstickies.
Journal articles
Magazine articles
Co-pulping of Trewia nudiflora and Trema orientalis, TAPPI Journal June 2023
ABSTRACT: Trewia nudiflora, a fast-growing species, was evaluated as a pulpwood. The a-cellulose content of this species was 40.4% with a Klason lignin of 21.5%. It was characterized by shorter fibers with a thin cell wall. The pulp yield was 40% with a kappa number of 16 at the conditions of 18% active alkali charge and 30% sulfidity for 2 h cooking at 170°C. T. nudiflora was similar to Trema orientalis in anatomical, morphological, and chemical composition; therefore, mixed chips at a 50:50 mixture ratio were cooked under optimum conditions. The pulp yield of mixed chip cooking was 45.4% with a kappa number of 19.4. The tensile and tear index of T. nudiflora pulps were 64.8 Nœm/g and 11.5 kPaœm2/g at 35 °SR, respectively. The mixed chips, T. nudiflora, and T. orientalis pulps showed above 81% brightness when bleached by D0(EP)D1 sequence using 20 kg chlorine dioxide (ClO2)/ton of pulp.
Magazine articles
Editor's Note: The reality of renewables, TAPPI JOURNAL June
Editor's Note: The reality of renewables, TAPPI JOURNAL June 2010
Journal articles
Magazine articles
A feasibility study of using the organic Rankine cycle for power generation from the flue gases of recovery boilers, TAPPI Journal August 2022
ABSTRACT: Almost 415 tons/h of flue gases with a temperature of 160°C are released to the atmosphere from the recovery boiler of a pulp mill with capacity of 1000 air dried (a.d.) metric tons of pulp per day. This is a large waste heat stream that can be used to generate power, to decrease the operating costs of a pulp mill, and to save carbon dioxide (CO2) emissions. In this work, the feasibility of using an organic Rankine cycle (ORC) with ammonia as the working fluid to generate power from the flue gases of recovery boilers is studied. CHEMCAD and Taguchi methods are used for simulation of the process and for optimization of operating conditions, respectively. The temperature of the ammonia and flue gases at the exit of evaporator, exit pressure of the pump and turbine, and the degree of subcooling of ammonia at the exit of the condenser are five operating parameters that are manipulated to optimize the process. Three different scenarios are defined: minimizing the net power cost, maximizing the ORC efficiency, and maximizing the net profit. Different aspects of these scenarios, such as net power generation, cost, efficiency, and CO2 emission savings are discussed, and optimum operating conditions are reported.
Journal articles
Magazine articles
Utilization of kraft pulp mill residuals, TAPPI Journal February 2022
ABSTRACT: Kraft pulp mills produce on average about 100 kg of solid residuals per metric ton of pulp produced. The main types of mill waste are sludge from wastewater treatment plants, ash from hog fuel boilers, dregs, grits, and lime mud from causticizing plants and lime dust from lime kilns. Of these, about half is disposed of in landfills, which highlights the need and potential for waste recycling and utilization. Sludge is either incinerated in hog fuel boilers to generate steam and power or used in various forms of land application, including land spreading, composting, or as an additive for landfill or mine waste covers. The majority of hog fuel boiler ash and causticizing plant residues is landfilled. Alkaline residuals can be conditioned for use in land application, manufacture of construction materials, and production of aggregates for road work. This technical review summarizes residuals utilization methods that have been applied in pulp and paper mills at demonstration- or full-scale, and therefore may act as a guide for mill managers and operators whose goal is to diminish the costs and the environmental impact of waste management.
Journal articles
Magazine articles
Preparing prehydrolyzed kraft dissolving pulp via phosphotungstic acid prehydrolysis from grape branches, TAPPI Journal January 2022
ABSTRACT: Dissolving pulp was successful prepared via phosphotungstic acid (PTA) prehydrolysis kraft (PHK) cooking followed by an elementary chlorine-free (ECF) bleaching process from grape branches. The effects of prehydrolysis temperature, reaction time, and PTA concentration that potentially affect the quality of dissolving pulp product on chemical components of pulp were studied via an orthogonal experiment. The structure of lignin was activated during the PTA prehydrolysis phase, and lignin was easily removed during the following cooking process. Thus, relatively mild conditions (140°C, 100 min) can be used in the cooking process. During the prehydrolysis phase, temperature exhibited the most significant influence on the cellulose purity of the obtained pulp fiber, followed by reaction time and PTA concentration. The optimized prehydrolysis conditions were as follows: prehydrolysis temperature, 145°C; reaction time, 75 min; and PTA concentration, 1 wt%. Whether the excessively high prehydrolysis temperature or prolonging the reaction time did not favor the retention of long chain cellulose, the delignification selectivity for the cooking process could not be further improved by excessive PTA loading. Under these prehydrolysis conditions, 94.1% and 29.0% for a-cellulose content and total yield could be achieved after the given cooking and bleaching conditions, respectively. Moreover, the chemical structure and crystal form of cellulose were scarcely changed after PTA prehydrolysis, which could be confirmed by results from Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). PTA prehydrolysis could be considered as an alternative method for preparing PHK dissolving pulp under relatively mild cooking conditions.