Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Surface energy considerations for offset printing of coated paper and paperboard, TAPPI Journal November 2023
ABSTRACT: Offset printing of coated paper involves the complex interactions of ink with a surface that is characterized by three major properties: roughness, porosity, and related pore network structure and surface chemistry (related to surface free energy [SFE]). The effects of porosity and roughness are relatively well understood and are documented in the literature, whereas the influence of surface chemistry is much less studied and therefore the focus of this paper. The key results shown include: i) Coating porosity has a negligible effect on SFE determination by contact angle using two fluids. ii) The chemistry of the latex polymer in the coating formulation dominates the influence on SFE compared to pigment, with any surface energy differences present in the pigment being almost completely masked by latex. iii) Wetting agent and corona treatment can impact water absorption rate and surface spreading of water, resulting in small differences in printability. Increasing the concentration of the surfactant on a coated surface indicates switching orientation of the surfactant molecules, giving a “step wise” printing result. When looking to improve offset printability by selection of different pigments, the variation in SFE is less important than variation in either surface roughness or porosity.
Journal articles
Magazine articles
Cross-flow separation characteristics and piloting of graphene oxide nanofiltration membrane sheets and tubes for kraft black liquor concentration, TAPPI Journal September 2023
ABSTRACT: Dewatering of weak black liquor (WBL) in the kraft cycle by evaporation is highly energy intensive. Membranes are an attractive alternative for energy-efficient dewatering, but existing commercial polymeric or ceramic membranes are either degraded in BL or have high capital costs. Our recent works have demonstrated the engineering of graphene oxide (GO) nanofiltration membranes, their stability and promising performance in BL conditions, and preliminary scale-up into sheets and tubes. Here, we describe in detail the separation characteristics of GO membrane sheets and tubes under real BL conditions and crossflow operation. Recycle-mode piloting of a GO tubular membrane showed average “production flux” of 16 L/m2/h (LMH) and high rejections of lignin (98.3%), total solids (66%), and total organic carbon (83%), with no signs of irreversible fouling identified. A corresponding GO sheet membrane produced an average flux of ~25 LMH and maintained high lignin rejection of ~97% during a slipstream pilot at a kraft mill site using WBL with ~16 wt% total solids (TS). Finally, we piloted a Dow/DuPont XUS1808 polyamide composite reverse osmosis (RO) membrane for last-mile processing of the GO nanofiltration membrane permeate. The RO membrane showed a steady state flux of 19 LMH at 65 bar and produced ~0.02 wt% TS water product, which is highly suitable for reuse in pulp washing operations in the kraft process. The results have strong positive implications for the industrial application of GO membranes in BL concentration and other related applications.
Journal articles
Magazine articles
Effect of pressure and time on water absorption of coated paperboard based on a modified Cobb test method, TAPPI Journal April 2024
ABSTRACT: This manuscript presents the study of water absorption by paperboard subjected to water at high hydrostatic pressure based on a modified Cobb tester. The new tester is based on TAPPI Standard Test Method T 441; however, the water column can reach up to 550 mm. The evaluation consisted of measurements of water absorption for coated and uncoated paperboard at different exposure times from 5 s to 45 s and water column heights from 10 mm to 500 mm (corresponding to hydrostatic pressures 98 Pa and 4.9 kPa, respectively). The coatings were formulated as a combination of styrene acrylate (SA; two binder levels) and two types of ground calcium carbonates (differing particle sizes) to form the two pre-coating structures: open and closed. The coating weight was 6 g/m2 applied on 210 g/m2 solid bleached board (SBB). In addition, 210 g/m2 uncoated boards were studied. Characterization of the coatings was performed with scanning electron microscopy (SEM), mercury intrusion, and roughness. It was found that the new device properly mimics the conditions of the current Cobb tester. The characterization of the coating also confirmed the presence of more open/larger pores of open coatings, confirming the desired coating structure. The absorption of boards was mainly driven by exposure pressure by comparing with exposure time. This was already evident after shorter periods of exposure time at 5 s and also 15 s exposure time. Paperboards with open coatings showed slightly higher absorption than other boards.
Journal articles
Magazine articles
Compression refining: the future of refining? Application to Nordic bleached softwood kraft pulp, TAPPI Journal August 2024
ABSTRACT: A new compression refining technology based on the kneading of high consistency pulp has been selected and tested in various conditions with a model Nordic bleached softwood kraft (NBSK) pulp. The method uses a kneader mixer referred to as the ultra continuous mixer (UCM) to condition the pulp. Its performance levels were also compared with those obtained with traditional low consistency (LC) refining of the same pulp.Compression refining of the NBSK pulp with the UCM led to a much better °SR/strength compromise than conventional LC refining. High strength properties can also be achieved by compression refining, in a range similar to/or better than LC refining. The higher the strength required, the greater the advantages of this technology: for a given strength, a difference of up to 10°SR can be obtained as compared to LC refined pulp. Moreover, a higher tear index can be obtained with compression refining, since fiber cutting is greatly reduced.The lower °SR is due to the release of fewer cellulosic fines, which also results in the manufacturing of new papers combining a high strength and a high permeability that cannot be obtained with traditional LC refining. Indeed, with LC refining, a high strength is generally associated with a low permeability. Upscaling this technology seems to be possible since large production devices are already on the market for applications other than paper/pulp. With this new pulp behavior, papermakers will have to learn to think differently, as paper strength and °SR can now be decorrelated.
Journal articles
Magazine articles
A case study review of wood ash land application programs in North America, TAPPI Journal February 2021
ABSTRACT: Several regulatory agencies and universities have published guidelines addressing the use of wood ash as liming material for agricultural land and as a soil amendment and fertilizer. This paper summarizes the experiences collected from several forest products facility-sponsored agricultural application programs across North America. These case studies are characterized in terms of the quality of the wood ash involved in the agricultural application, approval requirements, recommended management practices, agricultural benefits of wood ash, and challenges confronted by ash generators and farmers during storage, handling, and land application of wood ash.Reported benefits associated with land-applying wood ash include increasing the pH of acidic soils, improving soil quality, and increasing crop yields. Farmers apply wood ash on their land because in addition to its liming value, it has been shown to effectively fertilize the soil while maintaining soil pH at a level that is optimal for plant growth. Given the content of calcium, potassium, and magnesium that wood ash supplies to the soil, wood ash also improves soil tilth. Wood ash has also proven to be a cost-effective alternative to agricultural lime, especially in rural areas where access to commercial agricultural lime is limited. Some of the challenges identified in the review of case studies include lengthy application approvals in some jurisdictions; weather-related issues associated with delivery, storage, and application of wood ash; maintaining consistent ash quality; inaccurate assessment of required ash testing; potential increased equipment maintenance; and misconceptions on the part of some farmers and government agencies regarding the effect and efficacy of wood ash on soil quality and crop productivity.
Journal articles
Magazine articles
Addressing production bottlenecks and brownstock washer optimization via a membrane concentration system, TAPPI Journal July 2021
ABSTRACT: Advancements in membrane systems indicate that they will soon be robust enough to concentrate weak black liquor. To date, the economic impact of membrane systems on brownstock washing in kraft mills has not been studied and is necessary to understand the viability of these emerging systems and their best utilization.This study investigated the savings that a membrane system can generate related to brownstock washing. We found that evaporation costs are the primary barrier for mills seeking to increase wash water usage. Without these additional evaporation costs, we showed that our hypothetical 1000 tons/day bleached and brown pulp mills can achieve annual savings of over $1.0 MM when operating at higher dilution factors and fixed pulp production rate. We then investigated the impact of increasing pulp production on mills limited by their equipment. In washer-limited mill examples, we calculated that membrane systems can reduce the annual operating cost for a 7% production increase by 91%. Similarly, in evaporator-limited mill examples, membrane systems can reduce the annual operating cost for a 7% production increase by 86%. These results indicated that membrane systems make a production increase significantly more feasible for these equipment-limited mills.
Journal articles
Magazine articles
Research on flame-retardant paper prepared by the method of in-pulp addition of ammonium polyphosphate, TAPPI Journal May 2023
ABSTRACT: At present, the production of flame-retardant paper usually uses the impregnation method of phosphorus-nitrogen flame retardants in paper. There are few reports on the application of an in-pulp addition method. In this paper, the solubility of ammonium polyphosphate (APP) and its effect on flame-retardant paper were investigated for use in an in-pulp addition method. It was found that APP particles were square, with an average particle size of 21.88 µm. The particle size decreased significantly after immersion in water at 25°C for 24 h. Furthermore, most of the APPs were dissolved after immersion in water at 90°C for 0.5 h, and the residuals agglomerated and their shape turned into an amorphous form. The APP possessed strong electronegativity and could partially ionize in water. The solubility of APP was 0.18 g/100 mL water at 25°C and increased quickly when the temperature was higher than 30°C. Therefore, APP should be added to the pulp at temperatures below 30°C. The tensile strength of the paper initially increased with the addition of APP, and it reached the maximum value when the APP content was 10% and then gradually decreased. The limiting oxygen index (LOI) value of the paper was 28.7% when the added amount of APP was 30% and cationic polyacrylamide (CPAM) was 0.08%, reaching the flame-retardant level.
Journal articles
Magazine articles
Utilization of Areca leaf residues for sustainable production of greyboard, TAPPI Journal May 2024
ABSTRACT: This study primarily focused on the production of greyboard using waste materials from small scale industries, and specifically using Areca leaf waste fibers as a sustainable and environmentally friendly resource. Areca leaf waste fibers were employed as the primary raw material for greyboard manufacturing. The resulting greyboard exhibited commendable properties, including a tear index of 7.53 mN·m2/g, tensile index of 18.34·N·m/g (i.e., breaking length of 1870 m), burst factor of 9.24 (gf/cm2)/(g/m2) and stiffness factor of 33.1. This greyboard was created through a series of steps, including hydrothermal treatment of the material at 155°C and mechanical pulping refinement. The produced greyboard met the specifications outlined in the Indian Standard 2617 (1967) for greyboard. The key objective of this work was to leverage agricultural waste resources to develop a chemical-free greyboard, resulting in reduced waste disposal in open fields and a decrease in chemical usage within the greyboard manufacturing industry. Various characterization techniques, including field emission scanning electron microscopy (FE-SEM), attenuated total reflection•Fourier transform infrared (ATR-FTIR) analysis, and X-ray diffraction (XRD), were used to assess the fiber quality, including aspects such as functional groups, morphology, and crystallinity for the materials used in the manufacturing process.
Journal articles
Magazine articles
Control of continuous digester kappa number using generalized model predictive control, TAPPI Journal September 2024
ABSTRACT: Kappa number variability at the digester impacts pulp yield, physical strength properties, and lignin content for downstream delignification processing. Regulation of the digester kappa number is therefore of great importance to the pulp and paper industry. In this work, an industrial application of model-based predictive control (MPC), based on generalized prediction control, was developed for kappa number feedback control and applied to a dual vessel continuous digester located in Western Canada. The problem was complicated by the need to apply heat at multiple locations in the cook. In this study, the problem was reduced from a multiple to a single input system by identifying three potential single variable permutations for temperature adjustment. In the end, a coordinated approach to the heaters was adopted. The process was perturbed and modeled as a simple first order plus dead time model and implemented in generalized predictive control (GPC). The GPC was then configured to be equivalent to Dahlin’s controller, which reduced tuning parameterization to a single closed loop time constant. The controller was then tuned based on robustness towards a worst-case dead time mismatch of 50%. The control held the mean value of the kappa number close to the setpoint, and a 40% reduction in the kappa number’s standard deviation was achieved. Different kappa number trials were run, and the average fiberline yield for each period was evaluated. Trial results suggested yield gains of 0.3%•0.5% were possible for each 1 kappa number target increase.
Journal articles
Magazine articles
Study on the effect of aluminum diethyl phosphinate in synergy with ammonium polyphosphate on the flame retardancy of cellulose paper, TAPPI Journal April 2025
ABSTRACT: This paper involved the synergistic incorporation of ammonium polyphosphate (APP) and diethyl aluminum phosphinate (AlPi) as flame-retardant fillers for producing flame-retardant paper. The research revealed that APPs were square particles with a smooth surface, and their solubility was 0.29 g/100 mL at 20°C, which increased to 4.12 g/100 mL at 60°C. The surfaces of AlPis were rough and irregular. The solubility of AlPi was 0.023 g/100 mL at 20°C, and the solubility remained stable when the temperature increased. The addition of AlPi had a minor influence on the pulp beating degree. The tensile strength of kraft/APP/AlPi decreased with the increase of the AlPi addition. For a paper with 20 wt% APP and 0 wt% AlPi, the limiting oxygen index (LOI) value was 27.2%, and it burned completely at the eighth second during vertical combustion. When the AlPi additive content increased to 20 wt%, its LOI value increased to 32.2%, and the vertical combustion self-extinguished as soon as the flame was removed. Scanning electron microscopy (SEM) showed that the char residue of the kraft/APP/AlPi had a more complete fiber network structure than that of kraft/APP. The Raman spectroscopy indicated that the area ratio of the D (amorphous phase; disordered graphite vibration) band to the G (crystal phase; graphite carbon vibration) band (ID/ IG) ratio of kraft/APP/AlPi was lower than that of kraft/APP, meaning that the graphitization degree of the char residue of kraft/APP/AlPi was higher than that of kraft/APP, which indicated the kraft/APP/AlPi had better flame retardancy.