Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Online monitoring of the size distribution of lime nodules in a full-scale operated lime kiln using an in-situ laser triangulation camera, TAPPI Journal June 2024
ABSTRACT: To maximize efficiency of the recausticizing process in a pulp mill, producing a reburned lime with high and consistent reactivity is process critical. Prior investigations have demonstrated a correlation between the reactivity of lime and its nodule size, as well as the dusting behavior of the kiln. Therefore, monitoring the nodule size produced in the lime kiln could be a promising indirect method to measure the performance of the lime kiln. The objective of this investigation was to evaluate the utility of a laser triangulation camera for online monitoring of nodule size distribution for the lime kiln. A series of full-scale trials were performed in a lime kiln of a kraft pulp mill in which a camera was installed at the exit conveyor to analyze the lime discharging from the kiln. The nodule size distribution was analyzed for correlation with the lime temperature, flue gas temperature, and rotational speed of the kiln. The monitoring demonstrated temporal stability, and the results showed that the lime temperature had the most significant effect on the nodule size. The rotational speed of the lime kiln and the flue gas temperature showed limited effect on nodule size, but they had significant impact on the specific energy demand. The overall conclusion of the study is that the camera methodology effectively correlates lime temperature with nodule size distribution, and it advocates for the methods of implementation in automating lime temperature control, facilitating the production of consistently reactive lime at a lower specific energy consumption.
Journal articles
Magazine articles
Understanding the energy and emission implications of new technologies in a kraft mill: Insights from a CADSIM Plus simulation model, TAPPI Journal June 2024
ABSTRACT: Kraft mills play a vital role in energy transition because they have significant potential to reduce their own energy utilization and produce energy/products to decarbonize other sectors. Through biomass combustion and potential biogenic carbon emissions capture, these mills can contribute to offsetting emissions from other sectors. This research investigates the departmental and cross-departmental implications of technology upgrades on energy, steam, emissions, water, and chemicals using a CADSIM Plus simulation model. The model provides a comprehensive analysis of mass and energy balances, offering valuable insights into the benefits and limitations of each technology. The model facilitates scenario analysis and comparisons of process configurations, enabling data-driven decision-making for sustainable and competitive operations. Six high-impact technologies, including additional evaporator effects, weak black liquor membrane concentration, belt displacement washer for brownstock washing, oxygen delignification, and improvements to the pulp machine shoe press and vacuum pumps, are evaluated. Individual technologies resulted in energy savings of 1.2% to 5.4%, biomass consumption reductions of 8.6% to 31.6%, and total emissions reductions of 1.6% to 5.9%. Strategic decision-making must consider existing mill limitations, future technology implementation, and potential production increases. Future research will explore product diversification, biorefineries, and pathways to achieve carbon-negative operations, aiming to reduce emissions and secure a competitive future for kraft mills.
Journal articles
Magazine articles
Determining operating variables that impact internal fiber bonding using Wedge statistical analysis
ABSTRACT: In this study, Wedge statistical analysis tools were used to collect, collate, clean up, plot, and analyze several years of operational data from a commercial paper machine. The z-direction tensile (ZDT) and Scott Bond tests were chosen as representative of fiber bond strength. After analyzing thousands of operational parameters, the ones with the most significant impact upon ZDT involved starch application method, starch penetration, and the amount of starch applied. Scott bond was found to be significantly impacted by formation and refining. Final calendering of the paper web has also shown an impact on internal fiber bonding.
Journal articles
Magazine articles
A novel predictive method for filler coflocculation with cellulose microfibrils, TAPPI Journal November 2019
ABSTRACT: Different strategies aimed at reducing the negative impact of fillers on paper strength have been the objective of many studies during the past few decades. Some new strategies have even been patented or commercialized, yet a complete study on the behavior of the filler flocs and their effect on retention, drainage, and formation has not been found in literature. This type of research on fillers is often limited by difficulties in simulating high levels of shear at laboratory scale similar to those at mill scale. To address this challenge, a combination of techniques was used to compare preflocculation (i.e., filler is flocculated before addition to the pulp) with coflocculation strategies (i.e., filler is mixed with a binder and flocculated before addition to the pulp). The effect on filler and fiber flocs size was studied in a pilot flow loop using focal beam reflectance measurement (FBRM) and image analysis. Flocs obtained with cationic polyacrylamide (CPAM) and benonite were shown to have similar shear resistance with both strategies, whereas cationic starch (CS) was clearly more advantageous when coflocculation strategy was used. The effect of flocculation strategy on drainage rate, STFI formation, ash retention, and standard strength properties was measured. Coflocculation of filler with CPAM plus bentonite or CS showed promising results and produced sheets with high strength but had a negative impact on wire dewatering, opening a door for further optimization.
Journal articles
Magazine articles
Influence of tensile straining and fibril angle on the stiffness and strength of previously dried kraft pulp fibers, TAPPI JOURNAL July 2018
Influence of tensile straining and fibril angle on the stiffness and strength of previously dried kraft pulp fibers, TAPPI JOURNAL July 2018
Journal articles
Magazine articles
Factors affecting the free shrinkage of handsheets: apparent density, fines content, water retention value, and grammage, TAPPI JOURNAL June 2018
Factors affecting the free shrinkage of handsheets: apparent density, fines content, water retention value, and grammage, TAPPI JOURNAL June 2018
Journal articles
Magazine articles
Using online bubble size and total dissolved solids measurements to investigate the performance of oxygen delignification, TAPPI JOURNAL June 2018
Using online bubble size and total dissolved solids measurements to investigate the performance of oxygen delignification, TAPPI JOURNAL June 2018
Journal articles
Magazine articles
Production of polyhydroxyalkanoates (PHA)-based renewable packaging materials using photonic energy: A bench and pilot-scale study, TAPPI Journal October 2018
Production of polyhydroxyalkanoates (PHA)-based renewable packaging materials using photonic energy: A bench and pilot-scale study, TAPPI Journal October 2018
Journal articles
Magazine articles
Mineral/microfibrillated cellulose composite materials: High performance products, applications, and product forms, TAPPI JOURNAL September 2018
Mineral/microfibrillated cellulose composite materials: High performance products, applications, and product forms, TAPPI JOURNAL September 2018
Journal articles
Magazine articles
Enhancement of processability, surface, and mechanical properties of paper based on rice straw pulp using biopolymers for packaging applications, TAPPI Journal July 2019
ABSTRACT: wo biopolymers, chitosan and oxidized starch, were used as wet-end additives to improve the strength properties of the paper because of their biodegradable and non-hazardous qualities. The present study reports the improvement in surface and strength properties of packaging-grade paper made with rice straw pulp using biopolymers, chitosan, oxidized starch, and surface sizing added at the wet end of the paper machine.Use of chitosan at all doses from 0.5 to 10 kg/ton enhanced important surface and strength properties of paper. The breaking length, tear index, burst index, ring crush strength, stretch, tensile energy absorption index, and Taber stiff-ness of the paper with 10 kg/ton of chitosan as a wet-end additive showed 22%, 14%, 20%, 59%, 16%, 44%, and 48% improvement, respectively, in comparison to control, (i.e, without its addition). The Cobb60 was also reduced by 45%, showing better resistance to water in comparison to rice straw paper alone. The effects of chitosan added at the wet end on the paper surface were investigated using Fourier transform infrared spectroscopy (FTIR). The use of 10 kg/ton of chitosan at the wet end reduced the color and total suspended solids in the back water of the papermak-ing system by 55% and 51%, respectively. Further enhancement in the surface and strength properties of paper was observed following surface sizing with oxidized starch.