Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Event Type
Collections
Journal articles
Magazine articles
Preparing prehydrolyzed kraft dissolving pulp via phosphotungstic acid prehydrolysis from grape branches, TAPPI Journal January 2022
ABSTRACT: Dissolving pulp was successful prepared via phosphotungstic acid (PTA) prehydrolysis kraft (PHK) cooking followed by an elementary chlorine-free (ECF) bleaching process from grape branches. The effects of prehydrolysis temperature, reaction time, and PTA concentration that potentially affect the quality of dissolving pulp product on chemical components of pulp were studied via an orthogonal experiment. The structure of lignin was activated during the PTA prehydrolysis phase, and lignin was easily removed during the following cooking process. Thus, relatively mild conditions (140°C, 100 min) can be used in the cooking process. During the prehydrolysis phase, temperature exhibited the most significant influence on the cellulose purity of the obtained pulp fiber, followed by reaction time and PTA concentration. The optimized prehydrolysis conditions were as follows: prehydrolysis temperature, 145°C; reaction time, 75 min; and PTA concentration, 1 wt%. Whether the excessively high prehydrolysis temperature or prolonging the reaction time did not favor the retention of long chain cellulose, the delignification selectivity for the cooking process could not be further improved by excessive PTA loading. Under these prehydrolysis conditions, 94.1% and 29.0% for a-cellulose content and total yield could be achieved after the given cooking and bleaching conditions, respectively. Moreover, the chemical structure and crystal form of cellulose were scarcely changed after PTA prehydrolysis, which could be confirmed by results from Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). PTA prehydrolysis could be considered as an alternative method for preparing PHK dissolving pulp under relatively mild cooking conditions.
Journal articles
Magazine articles
In-situ green synthesis and adsorption on methylene blue of copper-based metal organic framework/cellulose/chitosan (CCTSA/HKUST-1) composite aerogel, TAPPI Journal October 2024
ABSTRACT: In order to explore the application of metal-organic frameworks (MOFs) in environmental and water treatment fields, a new composite aerogel of HKUST-1/cellulose/chitosan (CCTSA/HKUST-1) with better hydrostability was synthesized by an in-situ synthesis method combining covalent cross-linking and solvothermal methods as an efficient adsorbent for methylene blue (MB). The composite aerogel (CCTSA) obtained by covalent cross-linking of cellulose (CE) and chitosan (CTS) exhibited excellent stability under strong acid and solvent-thermal conditions. With the increase of CTS content, it was beneficial to the in-situ synthesis of HKUST-1, as well as to increase the mass loading rate of HKUST-1 to 37.06%, while the Brunauer-Emmett-Teller (BET) specific surface area of CCTSA/HKUST-1 composite aerogel reached 945.123 m2·g-1, which was much higher than that of the CCTSA composite aerogel (14.489 m2·g-1). The CCTSA/ HKUST-1 composite aerogel exhibited excellent adsorption capacity (537.6 mg·g-1) on MB solution, and cyclic adsorption could be achieved. This study proposes a concept of valorization of alkaline peroxide mechanical pulping (APMP) waste liquor to hemicellulose-based hydrogel. This hemicellulose-based hydrogel exhibits a sensitive temperature/pH dual response. Hemicellulose-based hydrogels swell or shrink through the change of hydrogen bond/electrostatic repulsion/charge screening. They also show good water absorption and water retention properties.
Journal articles
Magazine articles
Model development for real oxygen delignification processes, TAPPI Journal October 2024
ABSTRACT: Previous extensive work has been done on modeling the oxygen delignification process, based on how the basic parameters, i.e., temperature, kappa number, concentration of alkali, and concentration of oxygen, affect the delignification rate. However, these models are not used extensively to evaluate the performance of real processes, primarily because they have not been able to properly consider all the essential issues affecting delignification in practice. Such issues include the mass transfer and consumption of oxygen, which defines the concentration of dissolved oxygen in the process, and the effect of that concentration on the delignification rate. In this paper, a new way to model the oxygen delignification process is used in which these parameters, among other smaller matters, are taken into account. The basic model and its parameters were defined by the information obtained from the literature, delignification made in the laboratory tests, and mill processes and mill tests. An essential aspect of these studies was the information obtained from the oxygen concentration measured in the residual gas obtained from the top of the reactor. With the aid of this measurement, it was possible to define more accurately the consumption of oxygen and partial pressure of oxygen that define the concentration of dissolved oxygen in the reactor. Using mill experiments, a model was formed that predicts the operation of the oxygen delignification process. The model was used to show how much the process could be improved by optimizing the charge of the oxygen. The mill experiments also confirmed that mass transfer of oxygen is modeled correctly enough, except when the charge of oxygen is very low and/or the mixing is not efficient enough. In that case, there is variation in the concentration of oxygen in the process that should be taken into account in the modeling.
Journal articles
Magazine articles
Black liquor evaporator upgrades— life cycle cost analysis, TAPPI Journal March 2021
ABSTRACT: Black liquor evaporation is generally the most energy intensive unit operation in a pulp and paper manufacturing facility. The black liquor evaporators can represent a third or more of the total mill steam usage, followed by the paper machine and digester. Evaporator steam economy is defined as the unit mass of steam required to evaporate a unit mass of water from black liquor (i.e., lb/lb or kg/kg.) The economy is determined by the number of effects in an evaporator train and the system configuration. Older systems use four to six effects, most of which are the long tube vertical rising film type. Newer systems may be designed with seven or even eight effects using falling film and forced circulation crystallization technology for high product solids. The median age of all North American evaporator systems is 44 years. Roughly 25% of the current North American operating systems are 54 years or older. Older systems require more periodic maintenance and have a higher risk of unplanned downtime. Also, older systems have chronic issues with persistent liquor and vapor leaks, shell wall thinning, corrosion, and plugged tubes. Often these issues worsen to the point of requiring rebuild or replacement. When considering the age, technology, and lower efficiency of older systems, a major rebuild or new system may be warranted. The intent of this paper is to review the current state of black liquor evaporator systems in North America and present a basic method for determining whether a major rebuild or new installation is warrant-ed using total life cycle cost analysis (LCCA).
Journal articles
Magazine articles
Investigation of the influencing factors in odor emission from wet-end white water, TAPPI Journal October 2020
ABSTRACT: Emission of malodorous gases, such as volatile organic compounds (VOCs), hydrogen sulfide (H2S), and ammonia (NH3) during pulping and papermaking has caused certain harm to the air environment and human health. This paper investigated the influencing factors of odor emission from wet-end white water during the production of bobbin paper in a papermaking mill using old corrugated containers (OCC) as raw material. The concentration of malodorous gases emitted from wet-end white water was determined with pump-suction gas detectors. The results indicated that low temperature could limit the release of malodorous gases from white water. Specifically, no total volatile organic compounds (TVOC), H2S, and NH3 was detected at a temperature of 15°C. The concentrations of malodorous gases were slightly increased when temperature increased to 25°C. When temperature was 55°C, the released concentrations of TVOC, H2S, and NH3 were 22.3 mg/m3, 5.91 mg/m3, and 2.78 mg/m3, respectively. Therefore, the content of malodorous gases significantly increased with the temperature increase. The stirring of white water accelerated the release of malodorous gases, and the release rate sped up as the stirring speed increased. However, the total amount of malodorous gases released were basically the same as the static state. Furthermore, the higher the concentration of white water, the greater the amount of malodorous gases released. The pH had little influence on the TVOC release, whereas it significantly affected the release of H2S and NH3. With the increase of pH value, the released amount of H2S and NH3 gradually decreased. When pH reached 9.0, the release amount of H2S and NH3 was almost zero, proving that an alkaline condition inhibits the release of H2S and NH3.