Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 7,251–7,260 of 7,329 results (Duration : 0.034 seconds)
Journal articles
Open Access
Corrosion Mnitoring and Root Cause Identification in High So

Corrosion Mnitoring and Root Cause Identification in High Solids Concentrators, TAPPI JOURNAL July 2016

Journal articles
Magazine articles
Open Access
The Shendye-Fleming OBA Index for paper and paperboard, TAPPI Journal March 2022

ABSTRACT: We are proposing a new one-dimensional scale to calculate the effects of optical brightening agents (OBA) on the bluish appearance of paper. This index is separate from brightness and whiteness indices.In the paper industry, one-dimensional scales are widely used for determining optical properties of paper and paperboard. Whiteness, tint, brightness, yellowness, and opacity are the most common optical properties of paper and paperboard. Most of the papers have a blue cast generated by addition of OBA or blue dyes. This blue cast is given because of the human perception that bluer is whiter, up to a certain limit. To quantify this effect, it is necessary to determine how much blue cast paper and paperboard have. As the printing industry follows the ISO 3664 Standard for viewing, which has a D50 light source, this also plays a very important role in showing a blue cast. Color perception is based on light source and light reflected from an object. The ultraviolet (UV) component in D50 interacts with OBA to provide a reflection in the blue region of the visible spectrum. Use of a UV blocking filter results in measurements without the effect of emission in the blue region. This difference is used in determining the OBA effect in the visible range of the paper. This equation is known as the Shendye-Fleming OBA Index.

Journal articles
Magazine articles
Open Access
A guide to eliminating baggy webs, TAPPI Journal June 2021

ABSTRACT: Slack or baggy webs can cause misregistration, wrinkles, and breaks in printing and converting operations. Bagginess appears as non-uniform tautness in the cross direction (CD) of a paper web. The underlying cause is uneven CD tension profiles, for which there are few remedies once the paper is made. Precision measurements of CD tension profiles combined with trials on commercial paper machines have shown that uniform CD distribution of moisture, basis weight, and caliper profiles at the reel are key to avoiding bagginess. However, the most important but infrequently measured factor is the CD moisture profile entering the dryer section. Wetter areas entering the dryers are permanently elongated more than dry areas, leading to greater slackness in the finished paper. In storage, wound-in tension can amplify baggy streaks in paper near the surface of a roll and adjacent to the core. Unwrapped or poorly wrapped rolls exposed to low humidity environments may have baggy centers caused by moisture loss from the roll edges.All of the factors that impact bagginess have been incorporated in a mathematical model that was used to interpret the observations from commercial trials and can be used as a guide to solve future problems.

Journal articles
Magazine articles
Open Access
Understanding extensibility of paper: Role of fiber elongation and fiber bonding, TAPPI Journal March 2020

ABSTRACT: The tensile tests of individual bleached softwood kraft pulp fibers and sheets, as well as the micro-mechanical simulation of the fiber network, suggest that only a part of the elongation potential of individual fibers is utilized in the elongation of the sheet. The stress-strain curves of two actual individual pulp fibers and one mimicked classic stress-strain behavior of fiber were applied to a micromechanical simulation of random fiber networks. Both the experimental results and the micromechanical simulations indicated that fiber bonding has an important role not only in determining the strength but also the elongation of fiber networks. Additionally, the results indicate that the shape of the stress-strain curve of individual pulp fibers may have a significant influence on the shape of the stress-strain curve of a paper sheet. A large increase in elongation and strength of paper can be reached only by strengthening fiber-fiber bonding, as demonstrated by the experimental handsheets containing starch and cellulose microfibrils and by the micromechanical simulations. The key conclusion related to this investigation was that simulated uniform inter-fiber bond strength does not influence the shape of the stress-strain curve of the fiber network until the bonds fail, whereas the number of bonds has an influence on the activation of the fiber network and on the shape of the whole stress-strain curve.

Journal articles
Magazine articles
Open Access
Factors affecting phosphorus uptake/dissolution during slaking and causticizing, TAPPI Journal March 2024

ABSTRACT: Hydroxide is regenerated in the recovery cycle of kraft pulp mills by the addition of lime (CaO) to green liquor. Phosphate in green liquor can react with the lime during slaking/causticizing. Total titratable alkali (TTA), sulfidity, the concentration of phosphate in the green liquor, temperature, and the liming ratio were all variables explored in this work to determine their influence on phosphorus uptake and dissolution. Experiments were also run in which the lime was slaked before being added to the green liquor to separate reactions with phosphate during slaking and reactions that occur during causticizing. Both reburnt lime and technical grade CaO were used. The experiment results indicate that phosphorus primarily reacts with slaked lime (Ca(OH)2), and that the final concentration of phosphate in the white liquor at the end of slaking and causticizing is nearly independent of the initial concentration of phosphorus and only mildly dependent on the carbonate concentration in the green liquor. There do appear to be differences in the rate at which phosphate reacts with reburnt lime and technical grade CaO, though the reason for this was not determined.

Journal articles
Magazine articles
Open Access
An analytical approach to assess the interrelation of surface properties and softness of tissue paper, TAPPI Journal February 2023

ABSTRACT: The tissue industry constantly strives for improving the overall quality of tissue paper, as customers pay more attention to special quality features when it comes to a purchase decision between different products. As producers need to optimize their processes and furnish mixtures to keep production costs low, accurate and fast methods are crucial for characterization of important tissue properties. Here, we present a method for the characterization of the tissue surface regarding roughness and describe its relation to the tissue surface softness properties, based on a sample set of dry-creped bath tissue (DCT) with different amounts of softwood (SW), hardwood (HW), and nonwood pulp (NWP). The surface of tissue is complex and consists of several overlying structural features; thus, the optical non-contact measurement principle of focus variation was used to provide robust and reliable topographical surface information. Based on the obtained 3D data, areal surface analysis was performed to determine the surface roughness of the tissue samples, which is described by the developed interfacial areal ratio (Sdr) and the power spectral density (PSD). To determine the surface softness properties (TS7) of the tissue, a widely-used tissue softness analyzer (TSA) in the industry was employed. The surface softness (TS7) and the stiffness (D) parameters of this instrument were considered for surface and structural characterization. The results of the surface roughness (Sdr and PSD) and surface softness TS7 measurements show a good linear correlation, with higher surface roughness implying a higher TS7. The presented evaluation of these aspects of tissue softness allows an objective, fast, and accurate assessment of the relevant properties in addition to standard panel tests and is also applicable to other hygiene products.

Journal articles
Magazine articles
Open Access
Experimental study and prediction of two-phase flow pattern distribution diagrams in multi-channel cylinder dryer, TAPPI Journal July 2023

ABSTRACT: The multi-channel cylinder dryer (MCD) is designed to improve heat transfer. Although there are numerous research studies on the pressure drop, heat transfer characteristics, and flow pattern in static state of MCD, there is little research on the flow pattern in the rotating state. In this paper, the distribution of flow pattern in MCD under different rotating speeds and steam mass flow rates is studied. Furthermore, the logistic regression method (LR) is used to predict the flow pattern diagrams. The results show that in the front section of the flow channel, the flow pattern is basically annular flow, which is not affected by mass flow rate and rotating speed. On the other hand, wavy flow, vortex flow, slug flow, and bubble flow can be observed when the fluid enters the middle and the end section. The higher the rotating speed and the steam mass flow rate, the more the flow pattern tends to be an annular and wavy flow. At the end of the passage, the flow pattern is mainly slug flow. The predicted flow pattern diagrams are in good agreement with the experimental result, and to obtain an effective flow pattern in the middle and the end section of the flow channel, the influence of increasing rotating speed is greater than that of increasing steam mass flow rate. However, the specific rotating speed, steam mass flow rate, and other parameters should still be set by combining with the actual situation. This work can provide some references for the further study of MCD flow characteristics.

Journal articles
Magazine articles
Open Access
Techno-economic analysis of hydrothermal carbonization of pulp mill biosludge, TAPPI Journal March 2023

ABSTRACT: For many mills, the biosludge from wastewater treatment is difficult to recycle or dispose of. This makes it a challenging side stream and an important issue for chemical pulping. It often ends up being burned in the recovery or biomass boiler, although the moisture and non-process element (NPE) contents make it a problematic fuel. Biosludge has proven resistant to attempts to reduce its moisture. When incinerated in the biomass boiler, the heat from dry matter combustion is often insufficient to yield positive net heat. Mixing the sludge with black liquor in the evaporator plant for incineration in the recovery boiler is more energy efficient, but is still an additional load on the evaporator plant, as well as introducing NPEs to the liquor. In this study, treating the biosludge by hydrother-mal carbonization (HTC), a mild thermochemical conversion technology, is investigated. The HTC process has some notable advantages for biosludge treatment; taking place in water, it is well suited for sludge, and the hydrochar product is much easier to dewater than untreated sludge. In this study, two HTC plant designs are simulated using IPSEpro process simulation software, followed by economic analysis. Low temperature levels are used to minimize investment costs and steam consumption. The results show that if the sludge is incinerated in a biomass boiler, payback periods could be short at likely electricity prices. The HTC treatment before mixing the sludge with black liquor in the evaporator plant is profitable only if the freed evaporator capacity can be used to increase the firing liquor dry solids content.

Journal articles
Magazine articles
Open Access
Quantification of the degree of preference for different tissue products based on a hand-felt tissue test panel, TAPPI Journal May 2023

ABSTRACT: In this study, we successfully established a quantification model to determine the preference (PF) for different tissue products based on the results of a hand-felt tissue testing panel. The panel ascertained that products designed with four-ply tissues provided higher total tensile strength (TTS) and hand-felt surface softness (HSS) than did those of the three-ply, two-ply, and single-ply products.When practically tested with a tissue softness analyzer (TSA), the four-ply tissue product had a softness (TSA-HF) advantage; however, in human panel tests, more than half of the participants could not be sure of the hand-felt bulk softness (HBS) of the four-ply tissue product. This was mainly because when using the four-ply tissue, the hand-held test pad gave an overall perception distinctly different from those of the hand-held two- or three-ply products, which also differed from the flattened state of test pieces used in the instrumental softness tests. Users could distinctly feel that a product was safer (better TTS) and more comfortable (higher hand-held surface softness). Thus, the four-ply tissue product was accorded a higher preference.

Journal articles
Magazine articles
Open Access
Three-dimensional visualization and characterization of paper machine felts and their relationship to their properties and dewatering performance, TAPPI Journal July 2021

ABSTRACT: Polymeric felts are commonly used in the papermaking process on the paper machine wet end, in the press section, and in the dryer section. They provide an important function during paper manufacturing, including as a carrier or support; as a filter media assisting with water removal on the paper machine; in retention of fibers, fines, and fillers; and in some applications, such as tissue and towel, to impart key structural features to the web. These felts can have highly interwoven complex internal structures comprised of machine direction and cross-machine direction yarns of varying sizes and chemical compositions. Here, we present a non-intrusive three-dimensional (3D) image visualization method using advanced X-ray computed tomography (XRCT). This method was used to characterize the complex 3D felt structure and determine the water removal characteristics of some commonly used paper machine felts. The structural features analyzed include porosity; specific pore-yarn interfacial surface area; 3D pore size distribution; 3D fiber or yarn-size distribution; and their variations through the thickness direction. The top, middle, and bottom layers of the felt have very different structures to assist with water removal and impart paper properties. The size distribution of the yarns, as well as the pores in the different layers of the felt, are also inherently different. These structural features were non-intrusively quantified. In addition, variation in the structural characteristics through the thickness of the felts and its potential role in papermaking is explored. In addition to the 3D structural characteristics, permeability characteristics and water removal characteristics, including rewetting of select felt samples, have also been experimentally determined. It is interesting to observe the relationship between key structural features and permeability and water removal characteristics. These relationships can provide additional insights into press felt design, as well as ways to improve product properties and the dewatering efficiency and productivity of the paper machine.