Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
The influence of strain rate and pulp properties on the stre
The influence of strain rate and pulp properties on the stress relaxation of wet paper — modeling of relaxation, November 2016 TAPPI JOURNAL
Journal articles
Magazine articles
Rethinking the paper cup — beginning with extrusion process optimization for compostability and recyclability, TAPPI Journal June 2021
ABSTRACT: More than 50 billion disposable paper cups used for cold and hot beverages are sold within the United States each year. Most of the cups are coated with a thin layer of plastic — low density polyethylene (LDPE) — to prevent leaking and staining. While the paper in these cups is both recyclable and compostable, the LDPE coat-ing is neither. In recycling a paper cup, the paper is separated from the plastic lining. The paper is sent to be recycled and the plastic lining is typically sent to landfill. In an industrial composting environment, the paper and lining can be composted together if the lining is made from compostable materials. Coating paper cups with a compostable performance material uniquely allows for used cups to be processed by either recycling or composting, thus creating multiple pathways for these products to flow through a circular economy.A segment of the paper converting industry frequently uses an extrusion grade of polylactic acid (PLA) for zero-waste venues and for municipalities with ordinances for local composting and food service items. The results among these early adopters reveal process inefficiencies that elevate manufacturing costs while increasing scrap and generally lowering output when using PLA for extrusion coating. NatureWorks and Sung An Machinery (SAM) North America researched the extrusion coating process utilizing the incumbent polymer (LDPE) and PLA. The trademarked Ingeo 1102 is a new, compostable, and bio-based PLA grade that is specifically designed for the extrusion coating process. The research team identified the optimum process parameters for new, dedicated PLA extrusion coating lines. The team also identified changes to existing LDPE extrusion lines that processors can make today to improve output.The key finding is that LDPE and PLA are significantly different polymers and that processing them on the same equipment without modification of systems and/or setpoints can be the root cause of inefficiencies. These polymers each have unique processing requirements with inverse responses. Fine tuning existing systems may improve over-all output for the biopolymer without capital investment, and this study showed an increase in line speed of 130% by making these adjustments. However, the researchers found that highest productivity can be achieved by specifying new systems for PLA. A line speed increase to more than 180% and a reduction in coat weight to 8.6 µm (10.6 g/m2 or 6.5 lb/3000 ft2) was achieved in this study. These results show that Ingeo 1102 could be used as a paper coating beyond cups.
Journal articles
Magazine articles
Production and characterization of furanic bio-oil from Kawayan kiling (Bambusa vulgaris Schrad ex. Wendl) using molten citric acid in an open system, TAPPI Journal August 2024
ABSTRACT: The burning of fossil fuels poses many threats to the environment. These predicaments have led to a continuous search for alternative sources and production of energy, and biomass is considered the most abundant renewable energy source. In this study, the potential to produce furanic bio-oil from the cellulose of Bambusa vulgaris was explored. The proximate chemical analysis of bamboo was determined using TAPPI Standards. Cellulose was isolated through dewaxing, delignification, and alkaline treatments. The furanic bio-oil was produced by mixing cellulose and citric acid in a solvent-free environment. The effects of the digestion time (120 min, 180 min, and 240 min) on the yield and characteristics were determined. The chemical compositions were determined using Fourier transform infrared (FTIR) spectroscopy and gas chromatography-mass spectrometry (GCMS). B. vulgaris has the following chemical composition: alpha-cellulose (57.42 ± 0.40), holocellulose (78.84 ± 0.52), lig-nin (28.85 ± 0.17), hot water extractives (3.99 ± 0.08), organic extractives (0.77 ± 0.04), ash (4.67 ± 0.02), and moisture (12.98 ± 0.22). The bio-oil yield was affected by the digestion time. The highest yield was obtained at 180 min, followed by 120 min, and 240 min with 88.59%, 59.28%, and 49.96%, respectively. The peaks in the FTIR spectra corresponded to the compounds determined by the GCMS analysis. The dominant chemicals were furans (29.19%), ketones (26.31%), and carboxylic acids (19.26%). The bio-oil obtained at 180-min digestion time has the following properties: sulfur content (0.032 wt%), kinematic viscosity (1.03 mm2/s), specific gravity (0.925), copper corrosion test (No. 1a), pH (2.753), and water content (not detected). Overall, the obtained values from the properties and chemical characterization can be the basis for investigating its performance for biofuel production and utilization. This study is aligned with the Bamboo Industry’s Strategic Science and Technology Plan for the Philippines to develop other value-added products from bamboo and to achieve Sustainable Development Goal 7 (SDG 7) as determined by the United Nations.
Journal articles
Magazine articles
Control of malodorous gases emission from wet-end white water with hydrogen peroxide, TAPPI Journal October 2021
ABSTRACT: White water is highly recycled in the papermaking process so that its quality is easily deteriorated, thus producing lots of malodorous gases that are extremely harmful to human health and the environment. In this paper, the effect of hydrogen peroxide (H2O2) on the control of malodorous gases released from white water was investigated. The results showed that the released amount of total volatile organic compounds (TVOC) decreased gradually with the increase of H2O2 dosage. Specifically, the TVOC emission reached the minimum as the H2O2 dosage was 1.5 mmol/L, and meanwhile, the hydrogen sulfide (H2S) and ammonia (NH3) were almost completely removed. It was also found that pH had little effect on the release of TVOC as H2O2 was added, but it evidently affect-ed the release of H2S and NH3. When the pH value of the white water was changed to 4.0 or 9.0, the emission of TVOC decreased slightly, while both H2S and NH3 were completely removed in both cases. The ferrous ions (Fe2+) and the copper ions (Cu2+) were found to promote the generation of hydroxyl radicals (HO•) out of H2O2, enhancing its inhibition on the release of malodorous gases from white water. The Fe2+/H2O2 system and Cu2+/H2O2 system exhibited similar efficiency in inhibiting the TVOC releasing, whereas the Cu2+/H2O2 system showed better perfor-mance in removing H2S and NH3.
Journal articles
Magazine articles
Production of antimicrobial paper using nanosilver, nanocellulose, and chitosan from a coronavirus perspective, TAPPI Journal July 2021
ABSTRACT: The pulp and paper industry has an opportunity to play a vital role in breaking the spread of the COVID-19 pandemic through production that supports widespread use of antimicrobial paper. This paper provides a brief review of paper and paper-related industries, such as those producing relevant additives, and R&D organizations that are actively engaged in developing antimicrobial papers. The focus here is on the potential of three nano-additives for use in production of antimicrobial papers that combat coronavirus: nanosilver, nanocellulose, and chitosan. Various recent developments in relevant areas and concepts underlining the fight against coronavirus are also covered, as are related terms and concepts.
Journal articles
Magazine articles
Quantification of block testing for coated paper substrates, TAPPI Journal November 2024
ABSTRACT: Block resistance is a critical property for coated paper and board substrate that will be rolled, stacked, or otherwise contact itself after coating. Small differences in the coated substrate’s blocking can determine whether the substrate can be successfully used for its designated purpose. However, this crucial property is typically evaluated using a qualitative scale that is based on subjective operator ratings and impacted by factors that include: (1) sound of coated substrate during separation, and (2) force with which substrates are separated. This paper tests the hypothesis that quantifying the block test by measuring the force required to peel samples apart improves the test by: (1) providing more standardized testing conditions by controlling peel force and rate; (2) more clearly differentiating samples that experience minimal to some blocking; and (3) maintaining customizability to evaluate customer-specific test conditions. The method developed in this study uses a standard block tester and block testing conditions, but it peels the coated paper samples using a hot tack/heat seal instrument with force measurement capabilities. This paper demonstrates, using the instrument’s heat seal capabilities, that it can measure peel forces that represent the full range of observable block scores. The efficacy of this method was evaluated by having a group of trained operators engage in a randomized, blind experiment where they assessed block resistance on a set of coated paper samples using a modified qualitative block scale and compared their results to force measurements collected using the proposed method. The sample set included two coatings that have successfully run in commercial trials with minimal blocking, and one coating that experienced significant blocking in commercial trials despite only exhibiting some blocking at standard block test conditions in laboratory testing. The quantitative test method presented in this paper clearly differentiated these samples, whereas the qualitative assessment could not predict which samples had suitable block resistance for commercial use. As any tensile tester capable of measuring with 0.1 N resolution can be used for the Quantitative Block Test, the proposed method can be widely adopted. Furthermore, this method can be used for any block condition.
Journal articles
Magazine articles
Web lateral instability caused by nonuniform paper properties, TAPPI Journal January 2022
ABSTRACT: Lateral or cross-machine direction (CD) web movement in printing or converting can cause problems such as misregistration, wrinkles, breaks, and folder issues. The role of paper properties in this problem was studied by measuring lateral web positions on commercial printing presses and on a pilot-scale roll testing facility (RTF). The findings clearly showed that CD profiles of machine direction (MD) tension were a key factor in web stability. Uneven tension profiles cause the web to move towards the low-tension side. Although extremely nonuniform tension profiles are visible as bagginess, more often, tension profiles must be detected by precision devices such as the RTF. Once detected, the profiles may be analyzed to determine the cause of web offset and weaving problems.Causes of tension profiles can originate from nonuniform paper properties. For example, by means of case studies, we show that an uneven moisture profile entering the dryer section can lead to a nonuniform tension profile and lateral web movement. Time-varying changes in basis weight or stiffness may also lead to oscillations in the web’s lateral position. These problems were corrected by identifying the root cause and making appropriate changes. In addition, we developed a mathematical model of lateral stability that explains the underlying mechanisms and can be used to understand and correct causes of lateral web instability.
Journal articles
Magazine articles
Addressing production bottlenecks and brownstock washer optimization via a membrane concentration system, TAPPI Journal July 2021
ABSTRACT: Advancements in membrane systems indicate that they will soon be robust enough to concentrate weak black liquor. To date, the economic impact of membrane systems on brownstock washing in kraft mills has not been studied and is necessary to understand the viability of these emerging systems and their best utilization.This study investigated the savings that a membrane system can generate related to brownstock washing. We found that evaporation costs are the primary barrier for mills seeking to increase wash water usage. Without these additional evaporation costs, we showed that our hypothetical 1000 tons/day bleached and brown pulp mills can achieve annual savings of over $1.0 MM when operating at higher dilution factors and fixed pulp production rate. We then investigated the impact of increasing pulp production on mills limited by their equipment. In washer-limited mill examples, we calculated that membrane systems can reduce the annual operating cost for a 7% production increase by 91%. Similarly, in evaporator-limited mill examples, membrane systems can reduce the annual operating cost for a 7% production increase by 86%. These results indicated that membrane systems make a production increase significantly more feasible for these equipment-limited mills.
Journal articles
Magazine articles
Understanding the risks and rewards of using 50% vs. 10% strength peroxide in pulp bleach plants, TAPPI Journal November 2018
Authors: Alan W. Rudie and Peter W. Hart | ABSTRACT: The use of 50% concentration and 10% concentration hydrogen peroxide were evaluated for chemical and mechanical pulp bleach plants at storage and at point of use. Several dangerous occurrences have been documented when the supply of 50% peroxide going into the pulping process was not stopped during a process failure. Startup conditions and leaking block valves during maintenance outages have also contributed to explosions. Although hazardous events have occurred, 50% peroxide can be stored safely with proper precautions and engineering controls. For point of use in a chemical bleach plant, it is recommended to dilute the peroxide to 10% prior to application, because risk does not outweigh the benefit. For point of use in a mechanical bleach plant, it is recommended to use 50% peroxide going into a bleach liquor mixing system that includes the other chemicals used to maintain the brightening reaction rate. When 50% peroxide is used, it is critical that proper engineering controls are used to mitigate any risks.
Journal articles
Magazine articles
Online measurement of bulk, tensile, brightness, and ovendry content of bleached chemithermomechanical pulp using visible and near infrared spectroscopy, TAPPI JOURNAL April 2018
Online measurement of bulk, tensile, brightness, and ovendry content of bleached chemithermomechanical pulp using visible and near infrared spectroscopy, TAPPI JOURNAL April 2018