Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 771–780 of 856 results (Duration : 0.011 seconds)
Journal articles
Magazine articles
Open Access
Formic acid pulping process of rice straw for manufacturing of cellulosic fibers with silica, TAPPI Journal August 2021

ABSTRACT: Emerging technology has the potential to develop entirely new approaches for producing cellulose fiber-based materials along with fuels and chemical raw materials like lignin and furfural. Rice straw is a rich source of cellulosic fibers and inorganic micronic-sized particles termed as ash. They can prove helpful in development of new or enhanced agricultural residue-based materials and products that offer cost effective substitutes for nonrenewable materials used in different domestic and industrial applications. Lignocellulose is an abundant material that is submicronic at the basic level. Rice straw is a fibrous lignocellulosic material obtained as agricultural residue, but it differs from most crop residues in its high content of silicon dioxide (SiO2). Ash content on a dry weight basis ranges from 13% to 20%, varying according to the state of conservation of the straw after harvest. The ash in rice straw has nearly 75% SiO2. The particle size analysis shows variation from a few microns to hundreds of microns for inorganic residues left after burning at high temperatures above 550°C. Proximate analysis of rice straw shows that it contains 54% to 56% holocellulose and 15% to 18% lignin, both of which are natural biopolymers. The compound analysis shows the different compounds present in rice straw ash.Rice straw is available in hundreds of million tons in India and other Asian countries, so suitable technologies are required to convert rice straw from a biomass waste to useful bioproducts like pulp, paper, and paperboard. This research paper is intended to obtain pulp with fibers having inherent silica present in it to give high opacity paper and better bonding between fibers.

Journal articles
Magazine articles
Open Access
Influence of tensile straining and fibril angle on the stiffness and strength of previously dried kraft pulp fibers, TAPPI JOURNAL July 2018

Influence of tensile straining and fibril angle on the stiffness and strength of previously dried kraft pulp fibers, TAPPI JOURNAL July 2018

Journal articles
Magazine articles
Open Access
Factors affecting the free shrinkage of handsheets: apparent density, fines content, water retention value, and grammage, TAPPI JOURNAL June 2018

Factors affecting the free shrinkage of handsheets: apparent density, fines content, water retention value, and grammage, TAPPI JOURNAL June 2018

Journal articles
Magazine articles
Open Access
Using online bubble size and total dissolved solids measurements to investigate the performance of oxygen delignification, TAPPI JOURNAL June 2018

Using online bubble size and total dissolved solids measurements to investigate the performance of oxygen delignification, TAPPI JOURNAL June 2018

Journal articles
Magazine articles
Open Access
Production of polyhydroxyalkanoates (PHA)-based renewable packaging materials using photonic energy: A bench and pilot-scale study, TAPPI Journal October 2018

Production of polyhydroxyalkanoates (PHA)-based renewable packaging materials using photonic energy: A bench and pilot-scale study, TAPPI Journal October 2018

Journal articles
Magazine articles
Open Access
Understanding wet tear strength at varying moisture content in handsheets, TAPPI Journal January 2021

ABSTRACT: A laboratory study was conducted looking at the effects of moisture content on wet tear strength in handsheets. Three different wetting techniques were used to generate the wet tear (Elmendorf-type) data at varying moisture levels, from TAPPI standard conditions (dry) to over 60% moisture content (saturated). Unbleached hardwood and softwood fiber from full-scale kraft pulp production were used. The softwood fiber was refined using a Valley beater to reduce freeness. Handsheets were made with a blend of hardwood and softwood and with refined softwood, without the addition of wet-end chemistry. The resulting grams-force tear data obtained from the test was indexed with basis weight and plotted versus both moisture content and dryness. As moisture content levels in the handsheets increased, the wet tear strength also increased, reaching a critical maximum point. This marked a transition point on the graph where, beyond a critical moisture content level, the tear strength began to decline linearly as moisture increased. This pattern was repeated in handsheets made from a blend of hardwood and softwood and from 100% refined softwood.

Journal articles
Magazine articles
Open Access
The effect of microfibrillated cellulose on the wet-web strength of paper, TAPPI Journal January 2021

ABSTRACT: The wet-web strength of paper immediately after the press section of a paper machine is a critical factor in determining machine runnability. However, it is difficult to determine at commercial scale, because the web has to be broken and production interrupted in order to obtain a sample for measurement. The use of microfibrillated cellulose (MFC) is believed to increase wet-web strength, as it has allowed filler level increases of 10% or more on many commercial paper machines. In this paper, we describe a laboratory method for estimating the effect of MFC on wet sheet strength after press-ing, as well as actual measurements of wet-web strength from a pilot paper machine trial. These experiments have demonstrated the positive effect of MFC. At solids contents in the range typically observed after pressing, sheets with MFC at fixed filler content are significantly stronger, but also wetter, than those without it. When the use of MFC is combined with a typical increase in filler content, the wet web remains slightly stronger, but also becomes drier than the reference condition. These results are compatible with the theory put forward by van de Ven that wet-web strength is mainly a result of friction between entangled fibers, and they also suggest that the presence of MFC increases this friction.

Journal articles
Magazine articles
Open Access
Advanced real-time digital microscopy of foaming processes, TAPPI Journal January 2023

ABSTRACT: The properties of aqueous foams play a major role in foam forming and foam coating. Inline real-time foam measurements provide highly desired opportunities for optimization and control of foaming processes. This paper presents inline digital microscopy measurements of aqueous foams in foaming processes. It presents methods for providing detailed information on foam quality parameters, such as foam density and foam homogeneity in real time from the process. In addition, this study evaluates the performance of transillumination and front-light illumination in imaging of foams. The tests show very good results for the transillumination approach. Limitations of the image-based optical technique are discussed, and the precision of bubble size distribution measurement is assessed with a certificated reference substance. The measured foam densities are compared against the reference foam densities in the range 100•300 g/L, providing a linear correlation with R2 value of 0.99. In the case of heterogenous foams with a wide bubble size distribution, the bubble size-dependent dimensionless depth of field must be taken into account to obtain accurate estimates of foam density. Bubble-scale foam homogeneity is described by the standard deviation of bubble size distribution in foam.

Journal articles
Magazine articles
Open Access
Pareto-based design of experiments for identifying and comparing optimum sealing parameters of heat sealing applications in packaging machines, TAPPI Journal June 2023

ABSTRACT: Sealing is one of the most important process steps in industrial packaging, because the sealed seam is the most sensitive section of a package in terms of quality. For this reason, a major focus in flexible packaging is the sealing process, and among this, heat sealing is the most frequently used technology. In detail, applications of heat sealing processes are confronted with four conflicting objectives: increasing seam quality, reducing dwell time, reducing sealing temperature, and increasing process robustness towards varying conditions. Typical problems, such as identification of the optimum process parameters or selection of the most appropriate packaging film, are subject to these conflicting objectives.This paper presents a recently published design of experiments for characterizing and comparing heat sealing properties of packaging films based on a multi-objective optimization algorithm. The approach provides easy-to-read charts showing all optimum sealing parameters with regard to the four essential objectives of heat sealing: seam quality, dwell time, sealing temperature, and process robustness. Three case studies show exemplary applications of the new approach: 1) analyzing transport damages of beverage powder packages; 2) identifying and comparing optimum sealing parameter of a standard, mono-material, and fiber based packaging film regarding tightness and visual properties of the produced sachets; and 3) analyzing the effect of additional aluminum layers on sealing characteristics regarding hot-tack.The new design of experiments may provide the basis of a standard test method for the identification of optimal sealing parameters in the heat sealing processes.

Journal articles
Magazine articles
Open Access
Mineral/microfibrillated cellulose composite materials: High performance products, applications, and product forms, TAPPI JOURNAL September 2018

Mineral/microfibrillated cellulose composite materials: High performance products, applications, and product forms, TAPPI JOURNAL September 2018