Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 71–80 of 175 results (Duration : 0.012 seconds)
Journal articles
Magazine articles
Open Access
Techno-economic analysis of hydrothermal carbonization of pulp mill biosludge, TAPPI Journal March 2023

ABSTRACT: For many mills, the biosludge from wastewater treatment is difficult to recycle or dispose of. This makes it a challenging side stream and an important issue for chemical pulping. It often ends up being burned in the recovery or biomass boiler, although the moisture and non-process element (NPE) contents make it a problematic fuel. Biosludge has proven resistant to attempts to reduce its moisture. When incinerated in the biomass boiler, the heat from dry matter combustion is often insufficient to yield positive net heat. Mixing the sludge with black liquor in the evaporator plant for incineration in the recovery boiler is more energy efficient, but is still an additional load on the evaporator plant, as well as introducing NPEs to the liquor. In this study, treating the biosludge by hydrother-mal carbonization (HTC), a mild thermochemical conversion technology, is investigated. The HTC process has some notable advantages for biosludge treatment; taking place in water, it is well suited for sludge, and the hydrochar product is much easier to dewater than untreated sludge. In this study, two HTC plant designs are simulated using IPSEpro process simulation software, followed by economic analysis. Low temperature levels are used to minimize investment costs and steam consumption. The results show that if the sludge is incinerated in a biomass boiler, payback periods could be short at likely electricity prices. The HTC treatment before mixing the sludge with black liquor in the evaporator plant is profitable only if the freed evaporator capacity can be used to increase the firing liquor dry solids content.

Journal articles
Magazine articles
Open Access
Print quality of flexographic printed paperboard related to coating composition and structure, TAPPI Journal January 2018

Print quality of flexographic printed paperboard related to coating composition and structure, TAPPI Journal January 2018

Journal articles
Magazine articles
Open Access
Multifunctional barrier coating systems created by multilayer curtain coating, TAPPI Journal November 2020

ABSTRACT: Functional coatings are applied to paper and paperboard substrates to provide resistance, or a barrier, against media such as oil and grease (OGR), water, water vapor as measured by moisture vapor transmission rate (MVTR), and oxygen, for applications such as food packaging, food service, and other non-food packaging. Typical functional barrier coatings can be created by applying a solid coating or extruded film, a solvent based-coating, or a water-based coating to the paper substrate using various means of coating applicators.This paper focuses on water-based barrier coatings (WBBC) for OGR, water, MVTR, and oxygen barriers. The main goal was to create coated systems that can achieve more than one barrier property using multilayer curtain coating (MLCC). Curtain coating has emerged as the premier low-impact application me thod for coated paper and paperboard. This paper provides examples using MLCC to create coating structures that provide multiple barrier properties in a single coating step. Barrier polymer systems studied include styrene butadiene, styrene acrylate, vinyl acrylic, and natural materials, as well as proprietary additives where required to give desired performance. The paper also shows how the specific coating layers can be optimized to produce the desired property profile, without concern for blocking, as the addition of a non-blocking top layer can be applied in the MLCC structure as well. Experiments on base sheet types also shows the importance of applying the multilayer structure on a pre-coated surface in order to improve coating thickness consistency and potentially allow for the reduction of more expensive layer components.

Journal articles
Magazine articles
Open Access
The use of hollow sphere pigments as strength additives in paper and paperboard coatings—Part 1: The predictive nature of packing models on coating properties, TAPPI Journal November 2020

ABSTRACT: Hollow sphere pigments (HSPs) are widely used at low levels in coated paper to increase coating bulk and to provide gloss to the final sheet. However, HSPs also provide an ideal system through which one can examine the effect of pigment size and particle packing within a coating due to their unimodal and tunable particle sizes. The work presented in Part 1 and Part 2 of this study will discuss the use of blends of traditional inorganic pigments and HSPs in coating formulations across a variety of applications for improved coating strength. Part 1 of this study focuses on the theory of bimodal spherical packing and demonstrates the predictive nature of packing models on the properties of coating systems containing HSPs of two different sizes. This study also examines conditions where the model fails by examining the effect of particle size on coating strength in sytems like thermal paper basecoats where the non-HSP component has a broad particle size distribution, and how these surprising trends can be used to generate better-than-expected thermal printing performance in systems with low HSP/clay ratios. Part 2 of this study focuses on the incorporation of HSPs of different particle sizes into paperboard formulations to affect coating strength and opacity.

Journal articles
Magazine articles
Open Access
Z-directional testing of paperboard in combined tensile and compression loading, TAPPI Journal May 2024

ABSTRACT: The out-of-plane properties of paperboard are important in several converting applications such as printing, sealing, creasing, and calendering. A juxtaposed tensile and compression curve in the z direction (ZD) will, however, appear to have a kink or discontinuity at 0 stress. The purpose of the present work is to capture the continuous transition between tension and compression and to increase the understanding of the complex ZD properties of paperboard by cyclic testing. In this attempt to unify the ZD tensile and compressive behavior of paperboard, samples were laminated to the testing platens using heat seal laminate film. The method for adhering the samples was compared to samples that were laminated and glued to the testing platens. The edge effects of the cutting method were evaluated in compression testing with samples not attached to the testing platens. The flat slope seen in the initial part of the pure compression curve disappeared when the samples were laminated to the testing platens. The flat slope was instead replaced by a continuous response in the transition across 0 N. The stiffness in the transition region resembled the response in tensile testing. When the testing is cycled, the material exhibits a history dependence. Starting the cycle in either compression or tensile will show an effect on the stiffness at the transition, as well as the compressive stiffness. However, the ultimate tensile strength is unaffected.

Journal articles
Magazine articles
Open Access
A novel unit operation to remove hydrophobic contaminants, TAPPI Journal April 2020

ABSTRACT: For mills making paper with recovered fiber, removal of hydrophobic contaminants is essential for trouble-free operation of paper machines. Significant cost savings on paper machine operation can be achieved by reducing deposits, which results in better quality, reduced downtime, increased fiber yield, and reduced energy consumption. Bubble nucleation separation (BNS) is a relatively new process for removing hydrophobic particles. When vacuum is applied to a slurry, dissolved gas bubbles nucleate on hydrophobic particles and drag them to the surface for easy removal. We constructed a 16-L batch unit to evaluate the effect of operating parameters on removal of hydrophobic particles, using statistical design of experiments. These results were used to guide our design of a 16-L continuous unit. We tested this unit on laboratory and mill samples. The removal of 60%•80% of hydrophobic particles was achieved with a low reject rate of < 2%.Following on this success, we built a 200-L pilot unit and tested it in our pilot plant. With promising results there, we installed the pilot unit at a commercial paper recycling mill. Over the course of several mill trials, we showed that it was possible to remove a considerable amount of suspended solids from paper machine white water with less than 2% rejects. Unfortunately, due to the unit only treating 50 L/min and the mill flow being 12000 L/min, we were not able treat a sufficient portion of the white water to know whether a large-scale implementation of BNS would improve paper machine runnability.

Journal articles
Magazine articles
Open Access
Discrete element method to predict coating failure mechanisms, TAPPI JOURNAL January 2018

Discrete element method to predict coating failure mechanisms, TAPPI JOURNAL January 2018

Journal articles
Magazine articles
Open Access
Quantification of vegetable oil in recycled paper, TAPPI JOURNAL September 2020

ABSTRACT: Vegetable soybean oil is commonly used in cooking foods that are packaged in takeaway paper-board containers. Vegetable oil is hydrophobic, and in sufficiently high concentration, could interfere with interfiber bonding and result in paper strength loss. In order to quantify the effect of oil on the resulting paperboard strength, it is necessary to quantify the oil content in paper. A lab method was evaluated to determine the soybean oil content in paper. Handsheets were made with pulps previously treated with different proportions of vegetable oil. Pyrolysis gas chromatography-mass spectrometry (pyGCMS) was used to quantify the amount of oil left in the handsheets. The results revealed a strong correlation between the amount of oil applied to the initial pulp and the amount of oil left in the handsheets.In addition, the effect of vegetable oils on paper strength may be affected by the cooking process. Vegetable oil is known to degrade over time in the presence of oxygen, light, and temperature. The vegetable oil was put in an oven to imitate the oil lifecycle during a typical pizza cooking process. The cooked oil was then left at room temperature and not protected from air (oxygen) or from normal daylight. The heated, then cooled, oil was stored over a period of 13 weeks. During this time, samples of the aged oil were tested as part of a time-based degradation study of the cooked and cooled oil.

Journal articles
Magazine articles
Open Access
Chemical addition to wet webs using foam application, TAPPI Journal January 2023

ABSTRACT: In papermaking, the conventional way to add chemicals to the web is to dose them into the fiber stock and form the paper afterwards. However, in many cases, adding chemicals directly to the stock is challenging. For example, strength aids tend to increase flocculation in the stock, which limits the addition amounts of those aids. The need for better performance of paper (and paperboard) products has given rise to the need for functionalization of paper. Adding such functional chemicals to the stock is usually rather inefficient. Hence, novel methods are needed to add chemicals to the paper bulk. One such method is dosing chemicals to the wet web via foam application. In this study, we built a laboratory-scale sheetfed dynamic foam application device and utilized it to study addition of starch to wet bleached chemithermomechanical pulp (BCTMP) paper handsheets. The impact of parameters such as vacuum level, the amount of added chemical, and the viscosity of the foaming liquid on the penetration of starch into the wet web was explored. Starch penetration into wet webs was measured via iodine-potassium iodide staining, followed by image analysis. According to our results, controlling the viscosity of the foaming liquid gives the best possibility to control the penetration.

Journal articles
Magazine articles
Open Access
Dielectric spectroscopic studies of biological material evolution and application to paper, TAPPI JOURNAL September 2018

Dielectric spectroscopic studies of biological material evolution and application to paper, TAPPI JOURNAL September 2018