Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Paper bending stiffness and web tension measurement from a running web using a vacuum and computer imaging, TAPPI Journal May 2023
ABSTRACT: A novel method for measuring the bending stiffness of paper online during manufacturing is introduced. The method uses photometric stereo imaging to detect the shape of the deflection surface caused by a controllable pressure difference over the paper’s surfaces. The hardware for the measurement is based on a combination of two existing sensors, which has accelerated and facilitated the development of the implementation. The deflection and loads are tied together by the governing differential equation for the bending of an orthotropic elastic plate with selected simplifications. An approach to resolve material parameters and in-plane loads without knowledge of traditional boundary conditions is suggested. The presented method was tested in a paper mill during manufacturing. For bending stiffnesses measured online, correlation coefficients 0.88 and 0.92 were obtained compared to state-of-the-art laboratory measurements. However, the results gained from a moving web are noisy and the data requires correction of the slope and an off-set. Although several issues remain to be resolved before the method can be considered as an accurate measurement for industrial use, the theoretical background, the performance of online implementation, and the results are promising. Possible causes for the observed discrepancies and the future development of the method are discussed.
Journal articles
Magazine articles
Surface modification of TiO2 with MPS and its effects on the wettability and physical properties of Kawayan Kiling (Bambusa vulgaris Schrad ex. Wendl) handsheets, TAPPI Jouranl April 2024
ABSTRACT: The need for hydrophobic papers has steadily increased over past years. These papers are often sought after as packaging materials and have high demand in the food industry and medicine. In this study, various concentrations of surface-modified TiO2-MPS were added to Kawayan Kiling (B. vulgaris) pulp at the wet-end section of handsheet formation. Surface-modified TiO2-MPS was made from nano-titanium (IV) oxide using 3-(trimethoxysilyl)propyl methacrylate as a coupling agent. The wettability of handsheets and physical properties were tested using various standard methods. Results reveal that the handsheets without surface-modified TiO2-MPS had the lowest water contact angle (WCA), while the handsheet with 12.34% (w/w) surface-modified TiO2-MPS had the highest WCA. At 17% (w/w) surfacemodified TiO2-MPS, the WCA rapidly declined. Handsheets with surface-modified TiO2-MPS have a rougher surface compared to the handsheets without chemicals and handsheets with unmodified TiO2. This roughness made the handsheet hydrophobic. The handsheet with 12.34% (w/w) unmodified TiO2 has a smoother surface than the control handsheet. Energy-dispersive X-ray spectroscopy (EDS) analysis shows that the handsheet with 12.34% (w/w) unmodified TiO2 contained titanium, while the handsheet with 12.34% (w/w) surface-modified TiO2-MPS contained both titanium and silicon. Generally, the physical properties of handsheets improved with surface-modified TiO2- MPS, especially grammage, bulk thickness, tensile index, and water absorptiveness, which showed statistically significant differences across treatments. The tear index did not differ between treatments.
Journal articles
Magazine articles
Effects of different soda loss measurement techniques on brownstock quality, TAPPI Journal July 2024
ABSTRACT: The efficiency of the kraft recovery plant, bleaching process, and paper machine are affected when black liquor carryover from the brownstock washers is not controlled well. Measuring soda loss within a mill can vary from using conductivity, either in-situ or with a lab sample of black liquor filtrate squeezed from the last stage washer, to measuring absolute sodium content with a lab sodium specific ion probe or spectrophotometer. While measuring conductivity has value in tracking trends in black liquor losses, it is not an acceptable method in reporting losses in absolute units, typically in lb/ton of pulp. This is further complicated when trying to benchmark soda loss performance across a fleet of mills with multiple washer lines. Not only do the testing methods vary, but the amount of bound soda on high kappa pulps can be significant. This variability creates inconsistent results, and studies are needed to understand the effect of different testing methods on the pulp quality. In this study, soda loss is expressed as sodium sulfate (Na2SO4). Four different methods to measure soda content in pulp off commercial brownstock washers were studied: full digestion (FD), washing soaking overnight and washing (WSW), soaking in boiling water and stirring 10-min (SW-10), and squeeze-no wash (Sq). Total, washable, and bound sodium sulfate calculations were determined for each soda content measuring technique using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results showed bound and washable sodium sulfate amounts significantly depend on which soda measurement technique was used. In addition, the soda results were correlated with the pulp kappa numbers. As the kappa number increases, bound soda increases, regardless of the soda measurement method used. Impacts of high sodium sulfate in brownstock are also discussed.
Journal articles
Magazine articles
Understanding the energy and emission implications of new technologies in a kraft mill: Insights from a CADSIM Plus simulation model, TAPPI Journal June 2024
ABSTRACT: Kraft mills play a vital role in energy transition because they have significant potential to reduce their own energy utilization and produce energy/products to decarbonize other sectors. Through biomass combustion and potential biogenic carbon emissions capture, these mills can contribute to offsetting emissions from other sectors. This research investigates the departmental and cross-departmental implications of technology upgrades on energy, steam, emissions, water, and chemicals using a CADSIM Plus simulation model. The model provides a comprehensive analysis of mass and energy balances, offering valuable insights into the benefits and limitations of each technology. The model facilitates scenario analysis and comparisons of process configurations, enabling data-driven decision-making for sustainable and competitive operations. Six high-impact technologies, including additional evaporator effects, weak black liquor membrane concentration, belt displacement washer for brownstock washing, oxygen delignification, and improvements to the pulp machine shoe press and vacuum pumps, are evaluated. Individual technologies resulted in energy savings of 1.2% to 5.4%, biomass consumption reductions of 8.6% to 31.6%, and total emissions reductions of 1.6% to 5.9%. Strategic decision-making must consider existing mill limitations, future technology implementation, and potential production increases. Future research will explore product diversification, biorefineries, and pathways to achieve carbon-negative operations, aiming to reduce emissions and secure a competitive future for kraft mills.
Journal articles
Magazine articles
Colloid chemical aspects of paper formation in the presence of nanofibrillated cellulose and cationic starch, TAPPI Journal September 2024
ABSTRACT: A series of experimental tests were carried out to examine colloidal-scale consequences of optionally treating nanofibrillated cellulose (NFC) with cationic starches of different charge density and dosage (0.5% or 2.0% by weight), adding that material to a furnish prepared from 100% recycled copy paper, and then subjecting the mixture to very different levels of hydrodynamic shear. Tests included optical microscopy, sediment volume tests, sediment velocity tests, and “percent fines” assessment by means of a fiber quality analyzer (FQA). In addition, the zeta potential and charge demand of the studied materials were evaluated. Optical imaging revealed that cationic starch treatment of the NFC tended to agglomerate it into multiparticle clusters, which sometimes could be mostly redispersed by hydrodynamic shear. Subsequent addition of the starch-treated NFC to the default furnish resulted in much of the colloidal material becoming attached to fibers. Subsequent shearing of the mixtures was at least partly effective in separating the clusters of NFC from the fiber surface, resulting in essentially a two-component mixture. Multiparticle NFC clusters coexisted with the fiber suspension, sometimes attached and sometimes not, depending on the details of treatments. Sediment volume tests showed that systems containing cationic starch-treated NFC tended to have a higher density after settling in comparison to untreated NFC; these findings are consistent with the cationic starch acting as a stabilizer on the solid surfaces, allowing them to slide past each other during the settling process. Application of intense hydrodynamic shear tended to result in denser sediment. Results of tests with the sediment velocity messurement and the FQA percent fines assessment did not correlate well with changes in test conditions considered in this study.
Journal articles
Magazine articles
Stiffness and strength properties of five paperboards and their moisture dependency, TAPPI Journal February 2020
ABSTRACT: Five commercial multiply folding boxboards made on the same paperboard machine have been analyzed. The paperboards were from the same product series but had different grammage (235, 255, 270, 315, 340 g/m2) and different bending stiffness. The paperboards are normally used to make packages, and because the bending stiffness and grammage varies, the performance of the packages will differ. Finite element simulations can be used to predict these differences, but for this to occur, the stiffness and strength properties need to be deter-mined. For efficient determination of the three-dimensional properties in the machine direction (MD), cross direction (CD), and Z direction (ZD), it is proposed that the paperboard should be characterized using in-plane tension, ZD-tension, shear strength profiles, and two-point bending. The proposed setups have been used to determine stiff-ness and strength properties at different relative humidity (20,% 50%, 70%, and 90% RH), and the mechanical proper-ties have been evaluated as a function of moisture ratio.There was a linear relation between mechanical properties and moisture ratio for each paperboard. When the data was normalized with respect to the standard climate (50% RH) and plotted as a function of moisture ratio, it was shown that the normalized mechanical properties for all paperboards coincided along one single line and could therefore be expressed as a linear function of moisture ratio and two constants.Consequently, it is possible to obtain the mechanical properties of a paperboard by knowing the structural properties for the preferred level of RH and the mechanical property for the standard climate (50% RH and 23°C).
Journal articles
Magazine articles
Numerical investigation of the effect of ultrasound on paper drying, TAPPI Journal March 2022
ABSTRACT: The paper drying process is very energy inefficient. More than two-thirds of the total energy used in a paper machine is for drying paper. Novel drying technologies, such as ultrasound (US) drying, can be assessed numerically for developing next-generation drying technologies for the paper industry. This work numerically illustrates the impact on drying process energy efficiency of US transducers installed on a two-tiered dryer section of a paper machine. Piezoelectric transducers generate ultrasound waves, and liquid water mist can be ejected from the porous media. The drying rate of handsheet paper in the presence of direct-contact US is measured experimentally, and the resultant correlation is included in the theoretical model. The drying section of a paper machine is simulated by a theoretical drying model. In the model, three scenarios are considered. In the first scenario, the US modules are positioned in the dryer pockets, while in the second scenario, they are placed upstream of the drying section right after the press section. The third case is the combination of the first and second scenarios. The average moisture content and temperature during drying, enhancement of total mass flux leaving the paper by the US mechanism, total energy consumption, and thermal effect of heated US transducers are analyzed for all cases. Results show that the application of the US can decrease the total number of dryer drums for drying paper. This numerical study is based on the US correlation obtained with the US transducer direct-contact with the paper sample. Thus, future work should include US correlation based on a non-contact US transducer.
Journal articles
Magazine articles
Black liquor evaporators upgrade — How many effects?, TAPPI Journal April 2023
ABSTRACT: Black liquor evaporation is generally the most energy intensive unit operation in a pulp and paper manufacturing facility. The black liquor evaporators can represent a third or more of the total mill steam usage, followed by the paper machine and digester. When considering an evaporator rebuild or a new system, the key design question is how many effects to include in the system. The number of effects is the main design feature that deter-mines the economy of the system and the steam usage for a given evaporation capacity. A higher number of effects increases steam economy and reduces energy cost to a point, but additional effects also have higher initial capital cost and increased power costs. This research paper uses life-cycle cost analysis (LCCA) as a method to determine the optimum number of evaporator effects for a new evaporator system. The same basic principles and method can also apply to existing evaporator rebuild projects.
Journal articles
Magazine articles
Impact and feasibility of a membrane pre-concentration step in kraft recovery, TAPPI Journal May 2021
ABSTRACT: Emerging robust membrane systems can perform the first section of black liquor (BL) concentration by separating clean water from the black liquor stream using only mechanical pressure. By doing so, they can reduce the steam and energy required for BL concentration. Because of the high osmotic pressure of strong BL, a membrane system would not replace evaporators but would operate in series, performing the first section of BL concentration. In this work, we use a multi-effect evaporator (MEE) model to quantify the steam and energy savings associated with installing membrane systems of different sizes. When maintaining a constant BL solids throughput, we find that a pulp mill could reduce steam usage in its evaporators by up to 65%. Alternatively, a membrane system could also serve to increase BL throughput of the recovery train. We find that a membrane system capable of concentrating BL to 25% could double the BL solids throughput of a mill’s evaporators at the same steam usage. We also demonstrate that installing a membrane system before an MEE would minimally affect key operating parameters such as steam pressures and BL solids concentrations in each effect. This indicates that installing a membrane pre-concentration system would be nonintrusive to a mill’s operations.
Journal articles
Magazine articles
Corrosion damage and in-service inspection of retractable sootblower lances in recovery boilers, TAPPI Journal October 2021
ABSTRACT: Several reports of accidents involving serious mechanical failures of sootblower lances in chemical recovery boilers are known in the pulp and paper industry. These accidents mainly consisted of detachment and ejection of the lance tip, or even of the entire lance, to the inside of the furnace, towards the opposite wall. At least one of these cases known to the author resulted in a smelt-water explosion in the boiler.In other events, appreciable damage or near-miss conditions have already been experienced. The risk of catastrophic consequences of the eventual detachment of the lance tip or the complete lance of a recovery boiler soot-blower has caught the attention of manufacturers, who have adjusted their quality procedures, but this risk also needs to be carefully considered by the technical staff at pulp mills and in industry committees.This paper briefly describes the failure mechanisms that prevailed in past accidents, while recommending inspection and quality control policies to be applied in order to prevent further occurrences of these dangerous and costly component failures. Digital radiography, in conjunction with other well known inspection techniques, appears to be an effective means to ensure the integrity of sootblower lances in chemical recovery boilers used in the pulp and paper industry.