Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Collections
Magazine articles
Leveraging mill-wide big data sets for process and qualityimprovement in paperboard production, TAPPI Journal December 2024
Authors: Jianzhong Fu and Peter W. Hart | TAPPI J. 15(5): 309(2016) - ABSTRACT: The MWV mill in Covington, VA, USA, experienced a long term trend of increasing episodes of paper indents that resulted in significant quantities of internal rejects and production downtime. When traditional troubleshooting techniques failed to resolve the problem, big data analysis techniques were employed to help deter-mine root causes of this negative and increasingly frequent situation. Nearly 6000 operating variables were selected for a deep dive, multi-year analysis after reviewing mill-wide process logs and 60000+ PI tags (data points) collected from one of the major data historian systems at the MWV Covington mill. Nine billion data points were collected from November 2011 to August 2014. Strategies and methods were developed to format, clean, classify, and sort the various data sets to compensate for process lag time and to align timestamps, as well as to rank potential causes or indicators. GE Intelligent Platforms software was employed to develop decision trees for root cause analysis. Insights and possible correlations that were previously invisible or ignored were obtained across the mill, from pulp-ing, bleaching, and chemical recovery to the papermaking process. Several findings led the mill to revise selected process targets and to reconsider a step change in the drying process. These changes have exhibited significant impacts on the mill’s product quality, cost, and market performance. Mill-wide communications of the identified results helped transform the findings into executable actions. Several projects were initiated.
Journal articles
Magazine articles
Review of coating cracking and barrier integrity on paperboard substrates, TAPPI JournalDecember 2024
Authors: Joel C. Panek and Peter W. Hart | TAPPI J. 21(11): 589(2022) - ABSTRACT: Barrier packaging formats are major growth areas for the pulp and paper industry. It is technically challenging to maintain barrier properties during converting and end-use applications. Improved manufacturing capabilities and coating formulation knowledge will help maintain barrier integrity and enable growth of barrier products in challenging applications. These improvements will accelerate product development and commercialization, and allow faster response to product performance issues such as cracking. The literature on coating cracking provides knowledge mostly on the effects of coating formulations and to a lesser extent on substrate effects. Despite a large number of publications dedicated to coating failures, the approach to improve coating cracking remains empirical, and the transferability between studies and to real life applications has not been well established. Model development that successfully predicts commercial performance is in its infancy. However, some of these simplified models do a fairly good job predicting experimental data. The current work reviews the state of understanding as regards coating and barrier cracking and highlights the need for more research on cracking and barrier integrity.
Journal articles
Magazine articles
Lignin-based resins for kraft paper applications, TAPPI Journal November 2019
ABSTRACT: We investigated miscanthus (MS) and willow (W) lignin-furfural based resins as potential reinforce-ment agents on softwood and hardwood kraft paper. These resins might be sustainable alternatives to the commercial phenolformaldehyde (PF) resins. Phenol is a petrochemical product and formaldehyde has been classified as a carcinogen by the U.S. Environmental Protection Agency. The lignin used in this study was derived from hot water extraction (160ºC, 2 h) of MS and W biomass, and may be considered sulfur-free. These biorefinery lignins were characterized for their chemical composition and inherent properties via wet chemistry and instrumental techniques. The resin blends (MS-resin and W-resin) were characterized for their molecular weight, thermal behavior, and mechanical properties. Mechanical properties were measured by the resin’s ability to reinforce softwood and hard-wood kraft papers. The effect of adding hexamethylenetetramine (HMTA), a curing agent, to the resin was also examined. Mixtures of PF and lignin-based resins were investigated to further explore ways to reduce use of non-renewables, phenol, and carcinogenic formaldehyde. The results show that lignin-based resins have the potential to replace PF resins in kraft paper applications. For softwood paper, the highest strength was achieved using W-resin, without HMTA (2.5 times greater than PF with HMTA). For hardwood paper, MS-resin with HMTA gave the highest strength (2.3 times higher than PF with HMTA). The lignin-based resins, without HMTA, also yielded mechanical properties comparable to PF with HMTA.
Journal articles
Magazine articles
Working Toward a Closed-Loop Future, Paper360º November/December 2019
Working Toward a Closed-Loop Future, Paper360º November/December 2019
Journal articles
Magazine articles
Folding Boxboard: When Will North America Get on Board?, Paper360º November/December 2019
Folding Boxboard: When Will North America Get on Board?, Paper360º November/December 2019
Journal articles
Magazine articles
Manufacturing of the Future: A Manager and His Dog?, Paper360º November/December 2019
Manufacturing of the Future: A Manager and His Dog?, Paper360º November/December 2019
Journal articles
Magazine articles
Silicone Defoamers: Performance Booster or Risk?, Paper360º September/October 2019
Silicone Defoamers: Performance Booster or Risk?, Paper360º September/October 2019
Journal articles
Magazine articles
TAPPI News, Paper360º September/October 2019
TAPPI News, Paper360º September/October 2019
Journal articles
Magazine articles
We’ve Got Good Chemistry: Innovations Papermakers Need to Know About, Paper360º March/April 2020
We’ve Got Good Chemistry: Innovations Papermakers Need to Know About, Paper360º March/April 2020
Journal articles
Magazine articles
Fundamental understanding of removal of liquid thin film trapped between fibers in the paper drying process: A microscopic approach, TAPPI Journal May 2020
ABSTRACT: In the fabrication of paper, a slurry with cellulose fibers and other matter is drained, pressed, and dried. The latter step requires considerable energy consumption. In the structure of wet paper, there are two different types of water: free water and bound water. Free water can be removed most effectively. However, removing bound water consumes a large portion of energy during the process. The focus of this paper is on the intermediate stage of the drying process, from free water toward bound water where the remaining free water is present on the surfaces of the fibers in the form of a liquid film. For simplicity, the drying process considered in this study corresponds to pure convective drying through the paper sheet. The physics of removing a thin liquid film trapped between fibers in the paper drying process is explored. The film is assumed to be incompressible, viscous, and subject to evaporation, thermocapillarity, and surface tension. By using a volume of fluid (VOF) model, the effect of the previously mentioned parameters on drying behavior of the thin film is investigated.